+++ /dev/null
-# Makefile for Memory Manager (MM)
-SERVER = mm
-
-# directories
-u = /usr
-i = $u/include
-s = $i/sys
-h = $i/minix
-k = $u/src/kernel
-
-# programs, flags, etc.
-CC = exec cc
-CFLAGS = -I$i
-LDFLAGS = -i
-
-OBJ = main.o forkexit.o break.o exec.o procutils.o \
- signal.o alloc.o utility.o table.o trace.o getset.o misc.o
-
-# build local binary
-all build: $(SERVER)
-$(SERVER): $(OBJ)
- $(CC) -o $@ $(LDFLAGS) $(OBJ) -lsys -lutils
- install -S 256w $@
-
-# install with other servers
-install: /usr/sbin/servers/$(SERVER)
-/usr/sbin/servers/$(SERVER): $(SERVER)
- install -o root -cs $? $@
-
-# clean up local files
-clean:
- rm -f $(SERVER) *.o *.bak
-
-# dependencies
-a = mm.h $h/config.h $s/types.h $h/const.h $h/type.h \
- $i/ansi.h $i/fcntl.h $i/unistd.h $h/syslib.h \
- $i/limits.h $i/errno.h const.h type.h proto.h glo.h
-
-alloc.o: $a
-alloc.o: $i/signal.h
-alloc.o: $h/com.h
-alloc.o: $h/callnr.h
-alloc.o: mproc.h
-alloc.o: $k/type.h
-alloc.o: $k/const.h
-
-break.o: $a
-break.o: $i/signal.h
-break.o: mproc.h
-break.o: param.h
-
-exec.o: $a
-exec.o: $s/stat.h
-exec.o: $h/callnr.h
-exec.o: $h/com.h
-exec.o: $i/a.out.h
-exec.o: $i/signal.h
-exec.o: $i/string.h
-exec.o: mproc.h
-exec.o: param.h
-
-forkexit.o: $a
-forkexit.o: $s/wait.h
-forkexit.o: $h/callnr.h
-forkexit.o: $h/com.h
-forkexit.o: $h/utils.h
-forkexit.o: $i/signal.h
-forkexit.o: mproc.h
-forkexit.o: param.h
-
-getset.o: $a
-getset.o: $h/callnr.h
-getset.o: $i/signal.h
-getset.o: mproc.h
-getset.o: param.h
-
-main.o: $a
-main.o: $h/callnr.h
-main.o: $h/com.h
-main.o: $i/signal.h
-main.o: $i/fcntl.h
-main.o: $h/ioctl.h
-main.o: $s/ioc_memory.h
-main.o: $h/utils.h
-main.o: mproc.h
-main.o: param.h
-
-misc.o: $a
-misc.o: $h/callnr.h
-misc.o: $h/utils.h
-misc.o: $i/signal.h
-misc.o: $h/ioctl.h
-misc.o: $s/svrctl.h
-misc.o: mproc.h
-misc.o: param.h
-
-procutils.o: $a
-procutils.o: $i/timers.h
-procutils.o: $i/string.h
-procutils.o: $k/const.h
-procutils.o: $k/type.h
-procutils.o: $k/proc.h
-
-signal.o: $a
-signal.o: $s/stat.h
-signal.o: $h/callnr.h
-signal.o: $h/utils.h
-signal.o: $h/com.h
-signal.o: $i/signal.h
-signal.o: $s/sigcontext.h
-signal.o: $i/string.h
-signal.o: mproc.h
-signal.o: param.h
-
-table.o: $a
-table.o: $h/callnr.h
-table.o: $i/signal.h
-table.o: mproc.h
-table.o: param.h
-
-trace.o: $a
-trace.o: $h/com.h
-trace.o: $s/ptrace.h
-trace.o: $i/signal.h
-trace.o: mproc.h
-trace.o: param.h
-
-utility.o: $a
-utility.o: $s/stat.h
-utility.o: $h/callnr.h
-utility.o: $h/com.h
-utility.o: $i/fcntl.h
-utility.o: $i/signal.h
-utility.o: mproc.h
+++ /dev/null
-/* This file is concerned with allocating and freeing arbitrary-size blocks of
- * physical memory on behalf of the FORK and EXEC system calls. The key data
- * structure used is the hole table, which maintains a list of holes in memory.
- * It is kept sorted in order of increasing memory address. The addresses
- * it contains refers to physical memory, starting at absolute address 0
- * (i.e., they are not relative to the start of MM). During system
- * initialization, that part of memory containing the interrupt vectors,
- * kernel, and MM are "allocated" to mark them as not available and to
- * remove them from the hole list.
- *
- * The entry points into this file are:
- * alloc_mem: allocate a given sized chunk of memory
- * free_mem: release a previously allocated chunk of memory
- * mem_init: initialize the tables when MM start up
- * max_hole: returns the largest hole currently available
- */
-
-#include "mm.h"
-#include <minix/com.h>
-#include <minix/callnr.h>
-#include <signal.h>
-#include "mproc.h"
-#include "../../kernel/const.h"
-#include "../../kernel/type.h"
-
-#define NR_HOLES (2*NR_PROCS) /* max # entries in hole table */
-#define NIL_HOLE (struct hole *) 0
-
-PRIVATE struct hole {
- struct hole *h_next; /* pointer to next entry on the list */
- phys_clicks h_base; /* where does the hole begin? */
- phys_clicks h_len; /* how big is the hole? */
-} hole[NR_HOLES];
-
-PRIVATE struct hole *hole_head; /* pointer to first hole */
-PRIVATE struct hole *free_slots;/* ptr to list of unused table slots */
-#if ENABLE_SWAP
-PRIVATE int swap_fd = -1; /* file descriptor of open swap file/device */
-PRIVATE u32_t swap_offset; /* offset to start of swap area on swap file */
-PRIVATE phys_clicks swap_base; /* memory offset chosen as swap base */
-PRIVATE phys_clicks swap_maxsize;/* maximum amount of swap "memory" possible */
-PRIVATE struct mproc *in_queue; /* queue of processes wanting to swap in */
-PRIVATE struct mproc *outswap = &mproc[LOW_USER]; /* outswap candidate? */
-#else /* !SWAP */
-#define swap_base ((phys_clicks) -1)
-#endif /* !SWAP */
-
-FORWARD _PROTOTYPE( void del_slot, (struct hole *prev_ptr, struct hole *hp) );
-FORWARD _PROTOTYPE( void merge, (struct hole *hp) );
-#if ENABLE_SWAP
-FORWARD _PROTOTYPE( int swap_out, (void) );
-#else
-#define swap_out() (0)
-#endif
-
-/*===========================================================================*
- * alloc_mem *
- *===========================================================================*/
-PUBLIC phys_clicks alloc_mem(clicks)
-phys_clicks clicks; /* amount of memory requested */
-{
-/* Allocate a block of memory from the free list using first fit. The block
- * consists of a sequence of contiguous bytes, whose length in clicks is
- * given by 'clicks'. A pointer to the block is returned. The block is
- * always on a click boundary. This procedure is called when memory is
- * needed for FORK or EXEC. Swap other processes out if needed.
- */
-
- register struct hole *hp, *prev_ptr;
- phys_clicks old_base;
-
- do {
- hp = hole_head;
- while (hp != NIL_HOLE && hp->h_base < swap_base) {
- if (hp->h_len >= clicks) {
- /* We found a hole that is big enough. Use it. */
- old_base = hp->h_base; /* remember where it started */
- hp->h_base += clicks; /* bite a piece off */
- hp->h_len -= clicks; /* ditto */
-
- /* Delete the hole if used up completely. */
- if (hp->h_len == 0) del_slot(prev_ptr, hp);
-
- /* Return the start address of the acquired block. */
- return(old_base);
- }
-
- prev_ptr = hp;
- hp = hp->h_next;
- }
- } while (swap_out()); /* try to swap some other process out */
- return(NO_MEM);
-}
-
-/*===========================================================================*
- * free_mem *
- *===========================================================================*/
-PUBLIC void free_mem(base, clicks)
-phys_clicks base; /* base address of block to free */
-phys_clicks clicks; /* number of clicks to free */
-{
-/* Return a block of free memory to the hole list. The parameters tell where
- * the block starts in physical memory and how big it is. The block is added
- * to the hole list. If it is contiguous with an existing hole on either end,
- * it is merged with the hole or holes.
- */
-
- register struct hole *hp, *new_ptr, *prev_ptr;
-
- if (clicks == 0) return;
- if ( (new_ptr = free_slots) == NIL_HOLE) panic("Hole table full", NO_NUM);
- new_ptr->h_base = base;
- new_ptr->h_len = clicks;
- free_slots = new_ptr->h_next;
- hp = hole_head;
-
- /* If this block's address is numerically less than the lowest hole currently
- * available, or if no holes are currently available, put this hole on the
- * front of the hole list.
- */
- if (hp == NIL_HOLE || base <= hp->h_base) {
- /* Block to be freed goes on front of the hole list. */
- new_ptr->h_next = hp;
- hole_head = new_ptr;
- merge(new_ptr);
- return;
- }
-
- /* Block to be returned does not go on front of hole list. */
- while (hp != NIL_HOLE && base > hp->h_base) {
- prev_ptr = hp;
- hp = hp->h_next;
- }
-
- /* We found where it goes. Insert block after 'prev_ptr'. */
- new_ptr->h_next = prev_ptr->h_next;
- prev_ptr->h_next = new_ptr;
- merge(prev_ptr); /* sequence is 'prev_ptr', 'new_ptr', 'hp' */
-}
-
-/*===========================================================================*
- * del_slot *
- *===========================================================================*/
-PRIVATE void del_slot(prev_ptr, hp)
-register struct hole *prev_ptr; /* pointer to hole entry just ahead of 'hp' */
-register struct hole *hp; /* pointer to hole entry to be removed */
-{
-/* Remove an entry from the hole list. This procedure is called when a
- * request to allocate memory removes a hole in its entirety, thus reducing
- * the numbers of holes in memory, and requiring the elimination of one
- * entry in the hole list.
- */
-
- if (hp == hole_head)
- hole_head = hp->h_next;
- else
- prev_ptr->h_next = hp->h_next;
-
- hp->h_next = free_slots;
- free_slots = hp;
-}
-
-/*===========================================================================*
- * merge *
- *===========================================================================*/
-PRIVATE void merge(hp)
-register struct hole *hp; /* ptr to hole to merge with its successors */
-{
-/* Check for contiguous holes and merge any found. Contiguous holes can occur
- * when a block of memory is freed, and it happens to abut another hole on
- * either or both ends. The pointer 'hp' points to the first of a series of
- * three holes that can potentially all be merged together.
- */
-
- register struct hole *next_ptr;
-
- /* If 'hp' points to the last hole, no merging is possible. If it does not,
- * try to absorb its successor into it and free the successor's table entry.
- */
- if ( (next_ptr = hp->h_next) == NIL_HOLE) return;
- if (hp->h_base + hp->h_len == next_ptr->h_base) {
- hp->h_len += next_ptr->h_len; /* first one gets second one's mem */
- del_slot(hp, next_ptr);
- } else {
- hp = next_ptr;
- }
-
- /* If 'hp' now points to the last hole, return; otherwise, try to absorb its
- * successor into it.
- */
- if ( (next_ptr = hp->h_next) == NIL_HOLE) return;
- if (hp->h_base + hp->h_len == next_ptr->h_base) {
- hp->h_len += next_ptr->h_len;
- del_slot(hp, next_ptr);
- }
-}
-
-/*===========================================================================*
- * mem_init *
- *===========================================================================*/
-PUBLIC void mem_init(free)
-phys_clicks *free; /* memory size summaries */
-{
-/* Initialize hole lists. There are two lists: 'hole_head' points to a linked
- * list of all the holes (unused memory) in the system; 'free_slots' points to
- * a linked list of table entries that are not in use. Initially, the former
- * list has one entry for each chunk of physical memory, and the second
- * list links together the remaining table slots. As memory becomes more
- * fragmented in the course of time (i.e., the initial big holes break up into
- * smaller holes), new table slots are needed to represent them. These slots
- * are taken from the list headed by 'free_slots'.
- */
- struct memory mem[NR_MEMS]; /* chunks of physical memory */
- int i;
- register struct hole *hp;
- phys_clicks base; /* base address of chunk */
- phys_clicks size; /* size of chunk */
- message mess;
-
- /* Get a copy of the physical memory chunks found at the kernel. */
- if ((i=sys_getmemchunks(mem)) != OK)
- panic("MM couldn't get mem chunks",i);
-
- /* Put all holes on the free list. */
- for (hp = &hole[0]; hp < &hole[NR_HOLES]; hp++) hp->h_next = hp + 1;
- hole[NR_HOLES-1].h_next = NIL_HOLE;
- hole_head = NIL_HOLE;
- free_slots = &hole[0];
-
- /* Ask the kernel for chunks of physical memory and allocate holes. */
- *free = 0;
- for (i=0; i<NR_MEMS; i++) {
- if (mem[i].size > 0) {
- free_mem(mem[i].base, mem[i].size);
- *free += mem[i].size;
-#if ENABLE_SWAP
- if (swap_base < mem[i].base + mem[i].size)
- swap_base = mem[i].base+mem[i].size;
-#endif
- }
- }
-
-#if ENABLE_SWAP
- /* The swap area is represented as a hole above and separate of regular
- * memory. A hole at the size of the swap file is allocated on "swapon".
- */
- swap_base++; /* make separate */
- swap_maxsize = 0 - swap_base; /* maximum we can possibly use */
-#endif
-}
-
-#if ENABLE_SWAP
-/*===========================================================================*
- * swap_on *
- *===========================================================================*/
-PUBLIC int swap_on(file, offset, size)
-char *file; /* file to swap on */
-u32_t offset, size; /* area on swap file to use */
-{
-/* Turn swapping on. */
-
- if (swap_fd != -1) return(EBUSY); /* already have swap? */
-
- tell_fs(CHDIR, who, FALSE, 0); /* be like the caller for open() */
- if ((swap_fd = open(file, O_RDWR)) < 0) return(-errno);
- swap_offset = offset;
- size >>= CLICK_SHIFT;
- if (size > swap_maxsize) size = swap_maxsize;
- if (size > 0) free_mem(swap_base, (phys_clicks) size);
-}
-
-/*===========================================================================*
- * swap_off *
- *===========================================================================*/
-PUBLIC int swap_off()
-{
-/* Turn swapping off. */
- struct mproc *rmp;
- struct hole *hp, *prev_ptr;
-
- if (swap_fd == -1) return(OK); /* can't turn off what isn't on */
-
- /* Put all swapped out processes on the inswap queue and swap in. */
- for (rmp = &mproc[LOW_USER]; rmp < &mproc[NR_PROCS]; rmp++) {
- if (rmp->mp_flags & ONSWAP) swap_inqueue(rmp);
- }
- swap_in();
-
- /* All in memory? */
- for (rmp = &mproc[LOW_USER]; rmp < &mproc[NR_PROCS]; rmp++) {
- if (rmp->mp_flags & ONSWAP) return(ENOMEM);
- }
-
- /* Yes. Remove the swap hole and close the swap file descriptor. */
- for (hp = hole_head; hp != NIL_HOLE; prev_ptr = hp, hp = hp->h_next) {
- if (hp->h_base >= swap_base) {
- del_slot(prev_ptr, hp);
- hp = hole_head;
- }
- }
- close(swap_fd);
- swap_fd = -1;
- return(OK);
-}
-
-/*===========================================================================*
- * swap_inqueue *
- *===========================================================================*/
-PUBLIC void swap_inqueue(rmp)
-register struct mproc *rmp; /* process to add to the queue */
-{
-/* Put a swapped out process on the queue of processes to be swapped in. This
- * happens when such a process gets a signal, or if a reply message must be
- * sent, like when a process doing a wait() has a child that exits.
- */
- struct mproc **pmp;
-
- if (rmp->mp_flags & SWAPIN) return; /* already queued */
-
-
- for (pmp = &in_queue; *pmp != NULL; pmp = &(*pmp)->mp_swapq) {}
- *pmp = rmp;
- rmp->mp_swapq = NULL;
- rmp->mp_flags |= SWAPIN;
-}
-
-/*===========================================================================*
- * swap_in *
- *===========================================================================*/
-PUBLIC void swap_in()
-{
-/* Try to swap in a process on the inswap queue. We want to send it a message,
- * interrupt it, or something.
- */
- struct mproc **pmp, *rmp;
- phys_clicks old_base, new_base, size;
- off_t off;
- int proc_nr;
-
- pmp = &in_queue;
- while ((rmp = *pmp) != NULL) {
- proc_nr = (rmp - mproc);
- size = rmp->mp_seg[S].mem_vir + rmp->mp_seg[S].mem_len
- - rmp->mp_seg[D].mem_vir;
-
- if (!(rmp->mp_flags & SWAPIN)) {
- /* Guess it got killed. (Queue is cleaned here.) */
- *pmp = rmp->mp_swapq;
- continue;
- } else
- if ((new_base = alloc_mem(size)) == NO_MEM) {
- /* No memory for this one, try the next. */
- pmp = &rmp->mp_swapq;
- } else {
- /* We've found memory. Update map and swap in. */
- old_base = rmp->mp_seg[D].mem_phys;
- rmp->mp_seg[D].mem_phys = new_base;
- rmp->mp_seg[S].mem_phys = rmp->mp_seg[D].mem_phys +
- (rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_vir);
- sys_newmap(proc_nr, rmp->mp_seg);
- off = swap_offset + ((off_t) (old_base-swap_base)<<CLICK_SHIFT);
- lseek(swap_fd, off, SEEK_SET);
- rw_seg(0, swap_fd, proc_nr, D, (phys_bytes)size << CLICK_SHIFT);
- free_mem(old_base, size);
- rmp->mp_flags &= ~(ONSWAP|SWAPIN);
- *pmp = rmp->mp_swapq;
- check_pending(rmp); /* a signal may have waked this one */
- }
- }
-}
-
-/*===========================================================================*
- * swap_out *
- *===========================================================================*/
-PRIVATE int swap_out()
-{
-/* Try to find a process that can be swapped out. Candidates are those blocked
- * on a system call that MM handles, like wait(), pause() or sigsuspend().
- */
- struct mproc *rmp;
- struct hole *hp, *prev_ptr;
- phys_clicks old_base, new_base, size;
- off_t off;
- int proc_nr;
-
- rmp = outswap;
- do {
- if (++rmp == &mproc[NR_PROCS]) rmp = &mproc[LOW_USER];
-
- /* A candidate? */
- if (!(rmp->mp_flags & (PAUSED | WAITING | SIGSUSPENDED))) continue;
-
- /* Already on swap or otherwise to be avoided? */
- if (rmp->mp_flags & (TRACED | REPLY | ONSWAP)) continue;
-
- /* Got one, find a swap hole and swap it out. */
- proc_nr = (rmp - mproc);
- size = rmp->mp_seg[S].mem_vir + rmp->mp_seg[S].mem_len
- - rmp->mp_seg[D].mem_vir;
-
- prev_ptr = NIL_HOLE;
- for (hp = hole_head; hp != NIL_HOLE; prev_ptr = hp, hp = hp->h_next) {
- if (hp->h_base >= swap_base && hp->h_len >= size) break;
- }
- if (hp == NIL_HOLE) continue; /* oops, not enough swapspace */
- new_base = hp->h_base;
- hp->h_base += size;
- hp->h_len -= size;
- if (hp->h_len == 0) del_slot(prev_ptr, hp);
-
- off = swap_offset + ((off_t) (new_base - swap_base) << CLICK_SHIFT);
- lseek(swap_fd, off, SEEK_SET);
- rw_seg(1, swap_fd, proc_nr, D, (phys_bytes)size << CLICK_SHIFT);
- old_base = rmp->mp_seg[D].mem_phys;
- rmp->mp_seg[D].mem_phys = new_base;
- rmp->mp_seg[S].mem_phys = rmp->mp_seg[D].mem_phys +
- (rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_vir);
- sys_newmap(proc_nr, rmp->mp_seg);
- free_mem(old_base, size);
- rmp->mp_flags |= ONSWAP;
-
- outswap = rmp; /* next time start here */
- return(TRUE);
- } while (rmp != outswap);
-
- return(FALSE); /* no candidate found */
-}
-#endif /* SWAP */
+++ /dev/null
-/* The MINIX model of memory allocation reserves a fixed amount of memory for
- * the combined text, data, and stack segments. The amount used for a child
- * process created by FORK is the same as the parent had. If the child does
- * an EXEC later, the new size is taken from the header of the file EXEC'ed.
- *
- * The layout in memory consists of the text segment, followed by the data
- * segment, followed by a gap (unused memory), followed by the stack segment.
- * The data segment grows upward and the stack grows downward, so each can
- * take memory from the gap. If they meet, the process must be killed. The
- * procedures in this file deal with the growth of the data and stack segments.
- *
- * The entry points into this file are:
- * do_brk: BRK/SBRK system calls to grow or shrink the data segment
- * adjust: see if a proposed segment adjustment is allowed
- * size_ok: see if the segment sizes are feasible
- */
-
-#include "mm.h"
-#include <signal.h>
-#include "mproc.h"
-#include "param.h"
-
-#define DATA_CHANGED 1 /* flag value when data segment size changed */
-#define STACK_CHANGED 2 /* flag value when stack size changed */
-
-/*===========================================================================*
- * do_brk *
- *===========================================================================*/
-PUBLIC int do_brk()
-{
-/* Perform the brk(addr) system call.
- *
- * The call is complicated by the fact that on some machines (e.g., 8088),
- * the stack pointer can grow beyond the base of the stack segment without
- * anybody noticing it.
- * The parameter, 'addr' is the new virtual address in D space.
- */
-
- register struct mproc *rmp;
- int r;
- vir_bytes v, new_sp;
- vir_clicks new_clicks;
-
- rmp = mp;
- v = (vir_bytes) m_in.addr;
- new_clicks = (vir_clicks) ( ((long) v + CLICK_SIZE - 1) >> CLICK_SHIFT);
- if (new_clicks < rmp->mp_seg[D].mem_vir) {
- rmp->mp_reply.reply_ptr = (char *) -1;
- return(ENOMEM);
- }
- new_clicks -= rmp->mp_seg[D].mem_vir;
- if ((r=p_getsp(who, &new_sp)) != OK) /* ask kernel for current sp value */
- panic("MM couldn't get stack pointer", r);
- r = adjust(rmp, new_clicks, new_sp);
- rmp->mp_reply.reply_ptr = (r == OK ? m_in.addr : (char *) -1);
- return(r); /* return new address or -1 */
-}
-
-
-/*===========================================================================*
- * adjust *
- *===========================================================================*/
-PUBLIC int adjust(rmp, data_clicks, sp)
-register struct mproc *rmp; /* whose memory is being adjusted? */
-vir_clicks data_clicks; /* how big is data segment to become? */
-vir_bytes sp; /* new value of sp */
-{
-/* See if data and stack segments can coexist, adjusting them if need be.
- * Memory is never allocated or freed. Instead it is added or removed from the
- * gap between data segment and stack segment. If the gap size becomes
- * negative, the adjustment of data or stack fails and ENOMEM is returned.
- */
-
- register struct mem_map *mem_sp, *mem_dp;
- vir_clicks sp_click, gap_base, lower, old_clicks;
- int changed, r, ft;
- long base_of_stack, delta; /* longs avoid certain problems */
-
- mem_dp = &rmp->mp_seg[D]; /* pointer to data segment map */
- mem_sp = &rmp->mp_seg[S]; /* pointer to stack segment map */
- changed = 0; /* set when either segment changed */
-
- if (mem_sp->mem_len == 0) return(OK); /* don't bother init */
-
- /* See if stack size has gone negative (i.e., sp too close to 0xFFFF...) */
- base_of_stack = (long) mem_sp->mem_vir + (long) mem_sp->mem_len;
- sp_click = sp >> CLICK_SHIFT; /* click containing sp */
- if (sp_click >= base_of_stack) return(ENOMEM); /* sp too high */
-
- /* Compute size of gap between stack and data segments. */
- delta = (long) mem_sp->mem_vir - (long) sp_click;
- lower = (delta > 0 ? sp_click : mem_sp->mem_vir);
-
- /* Add a safety margin for future stack growth. Impossible to do right. */
-#define SAFETY_BYTES (384 * sizeof(char *))
-#define SAFETY_CLICKS ((SAFETY_BYTES + CLICK_SIZE - 1) / CLICK_SIZE)
- gap_base = mem_dp->mem_vir + data_clicks + SAFETY_CLICKS;
- if (lower < gap_base) return(ENOMEM); /* data and stack collided */
-
- /* Update data length (but not data orgin) on behalf of brk() system call. */
- old_clicks = mem_dp->mem_len;
- if (data_clicks != mem_dp->mem_len) {
- mem_dp->mem_len = data_clicks;
- changed |= DATA_CHANGED;
- }
-
- /* Update stack length and origin due to change in stack pointer. */
- if (delta > 0) {
- mem_sp->mem_vir -= delta;
- mem_sp->mem_phys -= delta;
- mem_sp->mem_len += delta;
- changed |= STACK_CHANGED;
- }
-
- /* Do the new data and stack segment sizes fit in the address space? */
- ft = (rmp->mp_flags & SEPARATE);
- r = size_ok(ft, rmp->mp_seg[T].mem_len, rmp->mp_seg[D].mem_len,
- rmp->mp_seg[S].mem_len, rmp->mp_seg[D].mem_vir, rmp->mp_seg[S].mem_vir);
- if (r == OK) {
- if (changed) sys_newmap((int)(rmp - mproc), rmp->mp_seg);
- return(OK);
- }
-
- /* New sizes don't fit or require too many page/segment registers. Restore.*/
- if (changed & DATA_CHANGED) mem_dp->mem_len = old_clicks;
- if (changed & STACK_CHANGED) {
- mem_sp->mem_vir += delta;
- mem_sp->mem_phys += delta;
- mem_sp->mem_len -= delta;
- }
- return(ENOMEM);
-}
-
-
-/*===========================================================================*
- * size_ok *
- *===========================================================================*/
-PUBLIC int size_ok(file_type, tc, dc, sc, dvir, s_vir)
-int file_type; /* SEPARATE or 0 */
-vir_clicks tc; /* text size in clicks */
-vir_clicks dc; /* data size in clicks */
-vir_clicks sc; /* stack size in clicks */
-vir_clicks dvir; /* virtual address for start of data seg */
-vir_clicks s_vir; /* virtual address for start of stack seg */
-{
-/* Check to see if the sizes are feasible and enough segmentation registers
- * exist. On a machine with eight 8K pages, text, data, stack sizes of
- * (32K, 16K, 16K) will fit, but (33K, 17K, 13K) will not, even though the
- * former is bigger (64K) than the latter (63K). Even on the 8088 this test
- * is needed, since the data and stack may not exceed 4096 clicks.
- */
-
-#if (CHIP == INTEL && _WORD_SIZE == 2)
- int pt, pd, ps; /* segment sizes in pages */
-
- pt = ( (tc << CLICK_SHIFT) + PAGE_SIZE - 1)/PAGE_SIZE;
- pd = ( (dc << CLICK_SHIFT) + PAGE_SIZE - 1)/PAGE_SIZE;
- ps = ( (sc << CLICK_SHIFT) + PAGE_SIZE - 1)/PAGE_SIZE;
-
- if (file_type == SEPARATE) {
- if (pt > MAX_PAGES || pd + ps > MAX_PAGES) return(ENOMEM);
- } else {
- if (pt + pd + ps > MAX_PAGES) return(ENOMEM);
- }
-#endif
-
- if (dvir + dc > s_vir) return(ENOMEM);
-
- return(OK);
-}
+++ /dev/null
-/* Constants used by the Memory Manager. */
-
-#define NO_MEM ((phys_clicks) 0) /* returned by alloc_mem() with mem is up */
-
-#if (CHIP == INTEL && _WORD_SIZE == 2)
-/* These definitions are used in size_ok and are not needed for 386.
- * The 386 segment granularity is 1 for segments smaller than 1M and 4096
- * above that.
- */
-#define PAGE_SIZE 16 /* how many bytes in a page (s.b.HCLICK_SIZE)*/
-#define MAX_PAGES 4096 /* how many pages in the virtual addr space */
-#endif
-
-#define INIT_PID 1 /* init's process id number */
+++ /dev/null
-/* This file handles the EXEC system call. It performs the work as follows:
- * - see if the permissions allow the file to be executed
- * - read the header and extract the sizes
- * - fetch the initial args and environment from the user space
- * - allocate the memory for the new process
- * - copy the initial stack from MM to the process
- * - read in the text and data segments and copy to the process
- * - take care of setuid and setgid bits
- * - fix up 'mproc' table
- * - tell kernel about EXEC
- * - save offset to initial argc (for ps)
- *
- * The entry points into this file are:
- * do_exec: perform the EXEC system call
- * rw_seg: read or write a segment from or to a file
- * find_share: find a process whose text segment can be shared
- */
-
-#include "mm.h"
-#include <sys/stat.h>
-#include <minix/callnr.h>
-#include <minix/com.h>
-#include <a.out.h>
-#include <signal.h>
-#include <string.h>
-#include "mproc.h"
-#include "param.h"
-
-FORWARD _PROTOTYPE( int new_mem, (struct mproc *sh_mp, vir_bytes text_bytes,
- vir_bytes data_bytes, vir_bytes bss_bytes,
- vir_bytes stk_bytes, phys_bytes tot_bytes) );
-FORWARD _PROTOTYPE( void patch_ptr, (char stack[ARG_MAX], vir_bytes base) );
-FORWARD _PROTOTYPE( int insert_arg, (char stack[ARG_MAX],
- vir_bytes *stk_bytes, char *arg, int replace) );
-FORWARD _PROTOTYPE( char *patch_stack, (int fd, char stack[ARG_MAX],
- vir_bytes *stk_bytes, char *script) );
-FORWARD _PROTOTYPE( int read_header, (int fd, int *ft, vir_bytes *text_bytes,
- vir_bytes *data_bytes, vir_bytes *bss_bytes,
- phys_bytes *tot_bytes, long *sym_bytes, vir_clicks sc,
- vir_bytes *pc) );
-
-#define ESCRIPT (-2000) /* Returned by read_header for a #! script. */
-#define PTRSIZE sizeof(char *) /* Size of pointers in argv[] and envp[]. */
-
-/*===========================================================================*
- * do_exec *
- *===========================================================================*/
-PUBLIC int do_exec()
-{
-/* Perform the execve(name, argv, envp) call. The user library builds a
- * complete stack image, including pointers, args, environ, etc. The stack
- * is copied to a buffer inside MM, and then to the new core image.
- */
-
- register struct mproc *rmp;
- struct mproc *sh_mp;
- int m, r, fd, ft, sn;
- static char mbuf[ARG_MAX]; /* buffer for stack and zeroes */
- static char name_buf[PATH_MAX]; /* the name of the file to exec */
- char *new_sp, *name, *basename;
- vir_bytes src, dst, text_bytes, data_bytes, bss_bytes, stk_bytes, vsp;
- phys_bytes tot_bytes; /* total space for program, including gap */
- long sym_bytes;
- vir_clicks sc;
- struct stat s_buf[2], *s_p;
- vir_bytes pc;
-
- /* Do some validity checks. */
- rmp = mp;
- stk_bytes = (vir_bytes) m_in.stack_bytes;
- if (stk_bytes > ARG_MAX) return(ENOMEM); /* stack too big */
- if (m_in.exec_len <= 0 || m_in.exec_len > PATH_MAX) return(EINVAL);
-
- /* Get the exec file name and see if the file is executable. */
- src = (vir_bytes) m_in.exec_name;
- dst = (vir_bytes) name_buf;
- r = sys_datacopy(who, (vir_bytes) src,
- PM_PROC_NR, (vir_bytes) dst, (phys_bytes) m_in.exec_len);
- if (r != OK) return(r); /* file name not in user data segment */
-
- /* Fetch the stack from the user before destroying the old core image. */
- src = (vir_bytes) m_in.stack_ptr;
- dst = (vir_bytes) mbuf;
- r = sys_datacopy(who, (vir_bytes) src,
- PM_PROC_NR, (vir_bytes) dst, (phys_bytes)stk_bytes);
-
- if (r != OK) return(EACCES); /* can't fetch stack (e.g. bad virtual addr) */
-
- r = 0; /* r = 0 (first attempt), or 1 (interpreted script) */
- name = name_buf; /* name of file to exec. */
- do {
- s_p = &s_buf[r];
- tell_fs(CHDIR, who, FALSE, 0); /* switch to the user's FS environ */
- fd = allowed(name, s_p, X_BIT); /* is file executable? */
- if (fd < 0) return(fd); /* file was not executable */
-
- /* Read the file header and extract the segment sizes. */
- sc = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
-
- m = read_header(fd, &ft, &text_bytes, &data_bytes, &bss_bytes,
- &tot_bytes, &sym_bytes, sc, &pc);
- if (m != ESCRIPT || ++r > 1) break;
- } while ((name = patch_stack(fd, mbuf, &stk_bytes, name_buf)) != NULL);
-
- if (m < 0) {
- close(fd); /* something wrong with header */
- return(stk_bytes > ARG_MAX ? ENOMEM : ENOEXEC);
- }
-
- /* Can the process' text be shared with that of one already running? */
- sh_mp = find_share(rmp, s_p->st_ino, s_p->st_dev, s_p->st_ctime);
-
- /* Allocate new memory and release old memory. Fix map and tell kernel. */
- r = new_mem(sh_mp, text_bytes, data_bytes, bss_bytes, stk_bytes, tot_bytes);
- if (r != OK) {
- close(fd); /* insufficient core or program too big */
- return(r);
- }
-
- /* Save file identification to allow it to be shared. */
- rmp->mp_ino = s_p->st_ino;
- rmp->mp_dev = s_p->st_dev;
- rmp->mp_ctime = s_p->st_ctime;
-
- /* Patch up stack and copy it from MM to new core image. */
- vsp = (vir_bytes) rmp->mp_seg[S].mem_vir << CLICK_SHIFT;
- vsp += (vir_bytes) rmp->mp_seg[S].mem_len << CLICK_SHIFT;
- vsp -= stk_bytes;
- patch_ptr(mbuf, vsp);
- src = (vir_bytes) mbuf;
- r = sys_datacopy(PM_PROC_NR, (vir_bytes) src,
- who, (vir_bytes) vsp, (phys_bytes)stk_bytes);
- if (r != OK) panic("do_exec stack copy err on", who);
-
- /* Read in text and data segments. */
- if (sh_mp != NULL) {
- lseek(fd, (off_t) text_bytes, SEEK_CUR); /* shared: skip text */
- } else {
- rw_seg(0, fd, who, T, text_bytes);
- }
- rw_seg(0, fd, who, D, data_bytes);
-
- close(fd); /* don't need exec file any more */
-
- /* Take care of setuid/setgid bits. */
- if ((rmp->mp_flags & TRACED) == 0) { /* suppress if tracing */
- if (s_buf[0].st_mode & I_SET_UID_BIT) {
- rmp->mp_effuid = s_buf[0].st_uid;
- tell_fs(SETUID,who, (int)rmp->mp_realuid, (int)rmp->mp_effuid);
- }
- if (s_buf[0].st_mode & I_SET_GID_BIT) {
- rmp->mp_effgid = s_buf[0].st_gid;
- tell_fs(SETGID,who, (int)rmp->mp_realgid, (int)rmp->mp_effgid);
- }
- }
-
- /* Save offset to initial argc (for ps) */
- rmp->mp_procargs = vsp;
-
- /* Fix 'mproc' fields, tell kernel that exec is done, reset caught sigs. */
- for (sn = 1; sn <= _NSIG; sn++) {
- if (sigismember(&rmp->mp_catch, sn)) {
- sigdelset(&rmp->mp_catch, sn);
- rmp->mp_sigact[sn].sa_handler = SIG_DFL;
- sigemptyset(&rmp->mp_sigact[sn].sa_mask);
- }
- }
-
- rmp->mp_flags &= ~SEPARATE; /* turn off SEPARATE bit */
- rmp->mp_flags |= ft; /* turn it on for separate I & D files */
- new_sp = (char *) vsp;
-
- tell_fs(EXEC, who, 0, 0); /* allow FS to handle FD_CLOEXEC files */
-
- /* System will save command line for debugging, ps(1) output, etc. */
- basename = strrchr(name, '/');
- if (basename == NULL) basename = name; else basename++;
- strncpy(rmp->mp_name, basename, PROC_NAME_LEN-1);
- rmp->mp_name[PROC_NAME_LEN] = '\0';
- sys_exec(who, new_sp, rmp->mp_flags & TRACED, basename, pc);
-
- return(SUSPEND); /* no reply, new program just runs */
-}
-
-
-/*===========================================================================*
- * read_header *
- *===========================================================================*/
-PRIVATE int read_header(fd, ft, text_bytes, data_bytes, bss_bytes,
- tot_bytes, sym_bytes, sc, pc)
-int fd; /* file descriptor for reading exec file */
-int *ft; /* place to return ft number */
-vir_bytes *text_bytes; /* place to return text size */
-vir_bytes *data_bytes; /* place to return initialized data size */
-vir_bytes *bss_bytes; /* place to return bss size */
-phys_bytes *tot_bytes; /* place to return total size */
-long *sym_bytes; /* place to return symbol table size */
-vir_clicks sc; /* stack size in clicks */
-vir_bytes *pc; /* program entry point (initial PC) */
-{
-/* Read the header and extract the text, data, bss and total sizes from it. */
-
- int m, ct;
- vir_clicks tc, dc, s_vir, dvir;
- phys_clicks totc;
- struct exec hdr; /* a.out header is read in here */
-
- /* Read the header and check the magic number. The standard MINIX header
- * is defined in <a.out.h>. It consists of 8 chars followed by 6 longs.
- * Then come 4 more longs that are not used here.
- * Byte 0: magic number 0x01
- * Byte 1: magic number 0x03
- * Byte 2: normal = 0x10 (not checked, 0 is OK), separate I/D = 0x20
- * Byte 3: CPU type, Intel 16 bit = 0x04, Intel 32 bit = 0x10,
- * Motorola = 0x0B, Sun SPARC = 0x17
- * Byte 4: Header length = 0x20
- * Bytes 5-7 are not used.
- *
- * Now come the 6 longs
- * Bytes 8-11: size of text segments in bytes
- * Bytes 12-15: size of initialized data segment in bytes
- * Bytes 16-19: size of bss in bytes
- * Bytes 20-23: program entry point
- * Bytes 24-27: total memory allocated to program (text, data + stack)
- * Bytes 28-31: size of symbol table in bytes
- * The longs are represented in a machine dependent order,
- * little-endian on the 8088, big-endian on the 68000.
- * The header is followed directly by the text and data segments, and the
- * symbol table (if any). The sizes are given in the header. Only the
- * text and data segments are copied into memory by exec. The header is
- * used here only. The symbol table is for the benefit of a debugger and
- * is ignored here.
- */
-
- if ((m= read(fd, &hdr, A_MINHDR)) < 2) return(ENOEXEC);
-
- /* Interpreted script? */
- if (((char *) &hdr)[0] == '#' && ((char *) &hdr)[1] == '!') return(ESCRIPT);
-
- if (m != A_MINHDR) return(ENOEXEC);
-
- /* Check magic number, cpu type, and flags. */
- if (BADMAG(hdr)) return(ENOEXEC);
-#if (CHIP == INTEL && _WORD_SIZE == 2)
- if (hdr.a_cpu != A_I8086) return(ENOEXEC);
-#endif
-#if (CHIP == INTEL && _WORD_SIZE == 4)
- if (hdr.a_cpu != A_I80386) return(ENOEXEC);
-#endif
- if ((hdr.a_flags & ~(A_NSYM | A_EXEC | A_SEP)) != 0) return(ENOEXEC);
-
- *ft = ( (hdr.a_flags & A_SEP) ? SEPARATE : 0); /* separate I & D or not */
-
- /* Get text and data sizes. */
- *text_bytes = (vir_bytes) hdr.a_text; /* text size in bytes */
- *data_bytes = (vir_bytes) hdr.a_data; /* data size in bytes */
- *bss_bytes = (vir_bytes) hdr.a_bss; /* bss size in bytes */
- *tot_bytes = hdr.a_total; /* total bytes to allocate for prog */
- *sym_bytes = hdr.a_syms; /* symbol table size in bytes */
- if (*tot_bytes == 0) return(ENOEXEC);
-
- if (*ft != SEPARATE) {
- /* If I & D space is not separated, it is all considered data. Text=0*/
- *data_bytes += *text_bytes;
- *text_bytes = 0;
- }
- *pc = hdr.a_entry; /* initial address to start execution */
-
- /* Check to see if segment sizes are feasible. */
- tc = ((unsigned long) *text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
- dc = (*data_bytes + *bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
- totc = (*tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
- if (dc >= totc) return(ENOEXEC); /* stack must be at least 1 click */
- dvir = (*ft == SEPARATE ? 0 : tc);
- s_vir = dvir + (totc - sc);
- m = size_ok(*ft, tc, dc, sc, dvir, s_vir);
- ct = hdr.a_hdrlen & BYTE; /* header length */
- if (ct > A_MINHDR) lseek(fd, (off_t) ct, SEEK_SET); /* skip unused hdr */
- return(m);
-}
-
-
-/*===========================================================================*
- * new_mem *
- *===========================================================================*/
-PRIVATE int new_mem(sh_mp, text_bytes, data_bytes,bss_bytes,stk_bytes,tot_bytes)
-struct mproc *sh_mp; /* text can be shared with this process */
-vir_bytes text_bytes; /* text segment size in bytes */
-vir_bytes data_bytes; /* size of initialized data in bytes */
-vir_bytes bss_bytes; /* size of bss in bytes */
-vir_bytes stk_bytes; /* size of initial stack segment in bytes */
-phys_bytes tot_bytes; /* total memory to allocate, including gap */
-{
-/* Allocate new memory and release the old memory. Change the map and report
- * the new map to the kernel. Zero the new core image's bss, gap and stack.
- */
-
- register struct mproc *rmp;
- vir_clicks text_clicks, data_clicks, gap_clicks, stack_clicks, tot_clicks;
- phys_clicks new_base;
- static char zero[1024]; /* used to zero bss */
- phys_bytes bytes, base, count, bss_offset;
-
- /* No need to allocate text if it can be shared. */
- if (sh_mp != NULL) text_bytes = 0;
-
- /* Allow the old data to be swapped out to make room. (Which is really a
- * waste of time, because we are going to throw it away anyway.)
- */
- rmp->mp_flags |= WAITING;
-
- /* Acquire the new memory. Each of the 4 parts: text, (data+bss), gap,
- * and stack occupies an integral number of clicks, starting at click
- * boundary. The data and bss parts are run together with no space.
- */
- text_clicks = ((unsigned long) text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
- data_clicks = (data_bytes + bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
- stack_clicks = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
- tot_clicks = (tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
- gap_clicks = tot_clicks - data_clicks - stack_clicks;
- if ( (int) gap_clicks < 0) return(ENOMEM);
-
- /* Try to allocate memory for the new process. */
- new_base = alloc_mem(text_clicks + tot_clicks);
- if (new_base == NO_MEM) return(ENOMEM);
-
- /* We've got memory for the new core image. Release the old one. */
- rmp = mp;
-
- if (find_share(rmp, rmp->mp_ino, rmp->mp_dev, rmp->mp_ctime) == NULL) {
- /* No other process shares the text segment, so free it. */
- free_mem(rmp->mp_seg[T].mem_phys, rmp->mp_seg[T].mem_len);
- }
- /* Free the data and stack segments. */
- free_mem(rmp->mp_seg[D].mem_phys,
- rmp->mp_seg[S].mem_vir + rmp->mp_seg[S].mem_len - rmp->mp_seg[D].mem_vir);
-
- /* We have now passed the point of no return. The old core image has been
- * forever lost, memory for a new core image has been allocated. Set up
- * and report new map.
- */
- if (sh_mp != NULL) {
- /* Share the text segment. */
- rmp->mp_seg[T] = sh_mp->mp_seg[T];
- } else {
- rmp->mp_seg[T].mem_phys = new_base;
- rmp->mp_seg[T].mem_vir = 0;
- rmp->mp_seg[T].mem_len = text_clicks;
- }
- rmp->mp_seg[D].mem_phys = new_base + text_clicks;
- rmp->mp_seg[D].mem_vir = 0;
- rmp->mp_seg[D].mem_len = data_clicks;
- rmp->mp_seg[S].mem_phys = rmp->mp_seg[D].mem_phys + data_clicks + gap_clicks;
- rmp->mp_seg[S].mem_vir = rmp->mp_seg[D].mem_vir + data_clicks + gap_clicks;
- rmp->mp_seg[S].mem_len = stack_clicks;
-
-#if (CHIP == M68000)
- rmp->mp_seg[T].mem_vir = 0;
- rmp->mp_seg[D].mem_vir = rmp->mp_seg[T].mem_len;
- rmp->mp_seg[S].mem_vir = rmp->mp_seg[D].mem_vir + rmp->mp_seg[D].mem_len + gap_clicks;
-#endif
-
- sys_newmap(who, rmp->mp_seg); /* report new map to the kernel */
-
- /* The old memory may have been swapped out, but the new memory is real. */
- rmp->mp_flags &= ~(WAITING|ONSWAP|SWAPIN);
-
- /* Zero the bss, gap, and stack segment. */
- bytes = (phys_bytes)(data_clicks + gap_clicks + stack_clicks) << CLICK_SHIFT;
- base = (phys_bytes) rmp->mp_seg[D].mem_phys << CLICK_SHIFT;
- bss_offset = (data_bytes >> CLICK_SHIFT) << CLICK_SHIFT;
- base += bss_offset;
- bytes -= bss_offset;
-
- while (bytes > 0) {
- count = MIN(bytes, (phys_bytes) sizeof(zero));
- if (sys_physcopy(PM_PROC_NR, D, (phys_bytes) zero,
- NONE, PHYS_SEG, base, count) != OK) {
- panic("new_mem can't zero", NO_NUM);
- }
- base += count;
- bytes -= count;
- }
- return(OK);
-}
-
-
-/*===========================================================================*
- * patch_ptr *
- *===========================================================================*/
-PRIVATE void patch_ptr(stack, base)
-char stack[ARG_MAX]; /* pointer to stack image within MM */
-vir_bytes base; /* virtual address of stack base inside user */
-{
-/* When doing an exec(name, argv, envp) call, the user builds up a stack
- * image with arg and env pointers relative to the start of the stack. Now
- * these pointers must be relocated, since the stack is not positioned at
- * address 0 in the user's address space.
- */
-
- char **ap, flag;
- vir_bytes v;
-
- flag = 0; /* counts number of 0-pointers seen */
- ap = (char **) stack; /* points initially to 'nargs' */
- ap++; /* now points to argv[0] */
- while (flag < 2) {
- if (ap >= (char **) &stack[ARG_MAX]) return; /* too bad */
- if (*ap != NULL) {
- v = (vir_bytes) *ap; /* v is relative pointer */
- v += base; /* relocate it */
- *ap = (char *) v; /* put it back */
- } else {
- flag++;
- }
- ap++;
- }
-}
-
-
-/*===========================================================================*
- * insert_arg *
- *===========================================================================*/
-PRIVATE int insert_arg(stack, stk_bytes, arg, replace)
-char stack[ARG_MAX]; /* pointer to stack image within MM */
-vir_bytes *stk_bytes; /* size of initial stack */
-char *arg; /* argument to prepend/replace as new argv[0] */
-int replace;
-{
-/* Patch the stack so that arg will become argv[0]. Be careful, the stack may
- * be filled with garbage, although it normally looks like this:
- * nargs argv[0] ... argv[nargs-1] NULL envp[0] ... NULL
- * followed by the strings "pointed" to by the argv[i] and the envp[i]. The
- * pointers are really offsets from the start of stack.
- * Return true iff the operation succeeded.
- */
- int offset, a0, a1, old_bytes = *stk_bytes;
-
- /* Prepending arg adds at least one string and a zero byte. */
- offset = strlen(arg) + 1;
-
- a0 = (int) ((char **) stack)[1]; /* argv[0] */
- if (a0 < 4 * PTRSIZE || a0 >= old_bytes) return(FALSE);
-
- a1 = a0; /* a1 will point to the strings to be moved */
- if (replace) {
- /* Move a1 to the end of argv[0][] (argv[1] if nargs > 1). */
- do {
- if (a1 == old_bytes) return(FALSE);
- --offset;
- } while (stack[a1++] != 0);
- } else {
- offset += PTRSIZE; /* new argv[0] needs new pointer in argv[] */
- a0 += PTRSIZE; /* location of new argv[0][]. */
- }
-
- /* stack will grow by offset bytes (or shrink by -offset bytes) */
- if ((*stk_bytes += offset) > ARG_MAX) return(FALSE);
-
- /* Reposition the strings by offset bytes */
- memmove(stack + a1 + offset, stack + a1, old_bytes - a1);
-
- strcpy(stack + a0, arg); /* Put arg in the new space. */
-
- if (!replace) {
- /* Make space for a new argv[0]. */
- memmove(stack + 2 * PTRSIZE, stack + 1 * PTRSIZE, a0 - 2 * PTRSIZE);
-
- ((char **) stack)[0]++; /* nargs++; */
- }
- /* Now patch up argv[] and envp[] by offset. */
- patch_ptr(stack, (vir_bytes) offset);
- ((char **) stack)[1] = (char *) a0; /* set argv[0] correctly */
- return(TRUE);
-}
-
-
-/*===========================================================================*
- * patch_stack *
- *===========================================================================*/
-PRIVATE char *patch_stack(fd, stack, stk_bytes, script)
-int fd; /* file descriptor to open script file */
-char stack[ARG_MAX]; /* pointer to stack image within MM */
-vir_bytes *stk_bytes; /* size of initial stack */
-char *script; /* name of script to interpret */
-{
-/* Patch the argument vector to include the path name of the script to be
- * interpreted, and all strings on the #! line. Returns the path name of
- * the interpreter.
- */
- char *sp, *interp = NULL;
- int n;
- enum { INSERT=FALSE, REPLACE=TRUE };
-
- /* Make script[] the new argv[0]. */
- if (!insert_arg(stack, stk_bytes, script, REPLACE)) return(NULL);
-
- if (lseek(fd, 2L, 0) == -1 /* just behind the #! */
- || (n= read(fd, script, PATH_MAX)) < 0 /* read line one */
- || (sp= memchr(script, '\n', n)) == NULL) /* must be a proper line */
- return(NULL);
-
- /* Move sp backwards through script[], prepending each string to stack. */
- for (;;) {
- /* skip spaces behind argument. */
- while (sp > script && (*--sp == ' ' || *sp == '\t')) {}
- if (sp == script) break;
-
- sp[1] = 0;
- /* Move to the start of the argument. */
- while (sp > script && sp[-1] != ' ' && sp[-1] != '\t') --sp;
-
- interp = sp;
- if (!insert_arg(stack, stk_bytes, sp, INSERT)) return(NULL);
- }
-
- /* Round *stk_bytes up to the size of a pointer for alignment contraints. */
- *stk_bytes= ((*stk_bytes + PTRSIZE - 1) / PTRSIZE) * PTRSIZE;
-
- close(fd);
- return(interp);
-}
-
-
-/*===========================================================================*
- * rw_seg *
- *===========================================================================*/
-PUBLIC void rw_seg(rw, fd, proc, seg, seg_bytes0)
-int rw; /* 0 = read, 1 = write */
-int fd; /* file descriptor to read from / write to */
-int proc; /* process number */
-int seg; /* T, D, or S */
-phys_bytes seg_bytes0; /* how much is to be transferred? */
-{
-/* Transfer text or data from/to a file and copy to/from a process segment.
- * This procedure is a little bit tricky. The logical way to transfer a
- * segment would be block by block and copying each block to/from the user
- * space one at a time. This is too slow, so we do something dirty here,
- * namely send the user space and virtual address to the file system in the
- * upper 10 bits of the file descriptor, and pass it the user virtual address
- * instead of a MM address. The file system extracts these parameters when
- * gets a read or write call from the memory manager, which is the only process
- * that is permitted to use this trick. The file system then copies the whole
- * segment directly to/from user space, bypassing MM completely.
- *
- * The byte count on read is usually smaller than the segment count, because
- * a segment is padded out to a click multiple, and the data segment is only
- * partially initialized.
- */
-
- int new_fd, bytes, r;
- char *ubuf_ptr;
- struct mem_map *sp = &mproc[proc].mp_seg[seg];
- phys_bytes seg_bytes = seg_bytes0;
-
- new_fd = (proc << 7) | (seg << 5) | fd;
- ubuf_ptr = (char *) ((vir_bytes) sp->mem_vir << CLICK_SHIFT);
-
- while (seg_bytes != 0) {
-#define MM_CHUNK_SIZE 8192
- bytes = MIN((INT_MAX / MM_CHUNK_SIZE) * MM_CHUNK_SIZE, seg_bytes);
- if (rw == 0) {
- r = read(new_fd, ubuf_ptr, bytes);
- } else {
- r = write(new_fd, ubuf_ptr, bytes);
- }
- if (r != bytes) break;
- ubuf_ptr += bytes;
- seg_bytes -= bytes;
- }
-}
-
-
-/*===========================================================================*
- * find_share *
- *===========================================================================*/
-PUBLIC struct mproc *find_share(mp_ign, ino, dev, ctime)
-struct mproc *mp_ign; /* process that should not be looked at */
-ino_t ino; /* parameters that uniquely identify a file */
-dev_t dev;
-time_t ctime;
-{
-/* Look for a process that is the file <ino, dev, ctime> in execution. Don't
- * accidentally "find" mp_ign, because it is the process on whose behalf this
- * call is made.
- */
- struct mproc *sh_mp;
-
- for (sh_mp = &mproc[INIT_PROC_NR]; sh_mp < &mproc[NR_PROCS]; sh_mp++) {
- if (!(sh_mp->mp_flags & SEPARATE)) continue;
- if (sh_mp == mp_ign) continue;
- if (sh_mp->mp_ino != ino) continue;
- if (sh_mp->mp_dev != dev) continue;
- if (sh_mp->mp_ctime != ctime) continue;
- return sh_mp;
- }
- return(NULL);
-}
+++ /dev/null
-/* This file deals with creating processes (via FORK) and deleting them (via
- * EXIT/WAIT). When a process forks, a new slot in the 'mproc' table is
- * allocated for it, and a copy of the parent's core image is made for the
- * child. Then the kernel and file system are informed. A process is removed
- * from the 'mproc' table when two events have occurred: (1) it has exited or
- * been killed by a signal, and (2) the parent has done a WAIT. If the process
- * exits first, it continues to occupy a slot until the parent does a WAIT.
- *
- * The entry points into this file are:
- * do_fork: perform the FORK system call
- * do_mm_exit: perform the EXIT system call (by calling mm_exit())
- * mm_exit: actually do the exiting
- * do_wait: perform the WAITPID or WAIT system call
- */
-
-
-#include "mm.h"
-#include <sys/wait.h>
-#include <minix/callnr.h>
-#include <minix/com.h>
-#include <minix/utils.h>
-#include <signal.h>
-#include "mproc.h"
-#include "param.h"
-
-#define LAST_FEW 2 /* last few slots reserved for superuser */
-
-PRIVATE pid_t next_pid = INIT_PID+1; /* next pid to be assigned */
-
-FORWARD _PROTOTYPE (void cleanup, (register struct mproc *child) );
-
-/*===========================================================================*
- * do_fork *
- *===========================================================================*/
-PUBLIC int do_fork()
-{
-/* The process pointed to by 'mp' has forked. Create a child process. */
-
- register struct mproc *rmp; /* pointer to parent */
- register struct mproc *rmc; /* pointer to child */
- int i, child_nr, t;
- phys_clicks prog_clicks, child_base;
- phys_bytes prog_bytes, parent_abs, child_abs; /* Intel only */
-
- /* If tables might fill up during FORK, don't even start since recovery half
- * way through is such a nuisance.
- */
- rmp = mp;
- if ((procs_in_use == NR_PROCS) ||
- (procs_in_use >= NR_PROCS-LAST_FEW && rmp->mp_effuid != 0))
- {
- printf("MM: proc table full!\n");
- return(EAGAIN);
- }
-
- /* Determine how much memory to allocate. Only the data and stack need to
- * be copied, because the text segment is either shared or of zero length.
- */
- prog_clicks = (phys_clicks) rmp->mp_seg[S].mem_len;
- prog_clicks += (rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_vir);
- prog_bytes = (phys_bytes) prog_clicks << CLICK_SHIFT;
- if ( (child_base = alloc_mem(prog_clicks)) == NO_MEM) return(ENOMEM);
-
- /* Create a copy of the parent's core image for the child. */
- child_abs = (phys_bytes) child_base << CLICK_SHIFT;
- parent_abs = (phys_bytes) rmp->mp_seg[D].mem_phys << CLICK_SHIFT;
- i = sys_abscopy(parent_abs, child_abs, prog_bytes);
- if (i < 0) panic("do_fork can't copy", i);
-
- /* Find a slot in 'mproc' for the child process. A slot must exist. */
- for (rmc = &mproc[0]; rmc < &mproc[NR_PROCS]; rmc++)
- if ( (rmc->mp_flags & IN_USE) == 0) break;
-
- /* Set up the child and its memory map; copy its 'mproc' slot from parent. */
- child_nr = (int)(rmc - mproc); /* slot number of the child */
- procs_in_use++;
- *rmc = *rmp; /* copy parent's process slot to child's */
-
- rmc->mp_parent = who; /* record child's parent */
- rmc->mp_flags &= (IN_USE|SEPARATE); /* inherit only these flags */
-
- /* A separate I&D child keeps the parents text segment. The data and stack
- * segments must refer to the new copy.
- */
- if (!(rmc->mp_flags & SEPARATE)) rmc->mp_seg[T].mem_phys = child_base;
- rmc->mp_seg[D].mem_phys = child_base;
- rmc->mp_seg[S].mem_phys = rmc->mp_seg[D].mem_phys +
- (rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_vir);
- rmc->mp_exitstatus = 0;
- rmc->mp_sigstatus = 0;
-
- /* Find a free pid for the child and put it in the table. */
- do {
- t = 0; /* 't' = 0 means pid still free */
- next_pid = (next_pid < 30000 ? next_pid + 1 : INIT_PID + 1);
- for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++)
- if (rmp->mp_pid == next_pid || rmp->mp_procgrp == next_pid) {
- t = 1;
- break;
- }
- rmc->mp_pid = next_pid; /* assign pid to child */
- } while (t);
-
- /* Tell kernel and file system about the (now successful) FORK. */
- sys_fork(who, child_nr, rmc->mp_pid);
- tell_fs(FORK, who, child_nr, rmc->mp_pid);
-
- /* Report child's memory map to kernel. */
- sys_newmap(child_nr, rmc->mp_seg);
-
- /* Reply to child to wake it up. */
- setreply(child_nr, 0);
- return(next_pid); /* child's pid */
-}
-
-
-/*===========================================================================*
- * do_mm_exit *
- *===========================================================================*/
-PUBLIC int do_mm_exit()
-{
-/* Perform the exit(status) system call. The real work is done by mm_exit(),
- * which is also called when a process is killed by a signal.
- */
-
- mm_exit(mp, m_in.status);
- return(SUSPEND); /* can't communicate from beyond the grave */
-}
-
-
-/*===========================================================================*
- * mm_exit *
- *===========================================================================*/
-PUBLIC void mm_exit(rmp, exit_status)
-register struct mproc *rmp; /* pointer to the process to be terminated */
-int exit_status; /* the process' exit status (for parent) */
-{
-/* A process is done. Release most of the process' possessions. If its
- * parent is waiting, release the rest, else keep the process slot and
- * become a zombie.
- */
-
- register int proc_nr;
- int parent_waiting, right_child;
- pid_t pidarg, procgrp;
- struct mproc *p_mp;
-
- proc_nr = (int) (rmp - mproc); /* get process slot number */
-
- /* Remember a session leader's process group. */
- procgrp = (rmp->mp_pid == mp->mp_procgrp) ? mp->mp_procgrp : 0;
-
- /* If the exited process has a timer pending, kill it. */
- if (rmp->mp_flags & ALARM_ON) set_alarm(proc_nr, (unsigned) 0);
-
- /* Tell the kernel and FS that the process is no longer runnable. */
- tell_fs(EXIT, proc_nr, 0, 0); /* file system can free the proc slot */
- sys_xit(rmp->mp_parent, proc_nr);
-
- /* Release the memory occupied by the child. */
- if (find_share(rmp, rmp->mp_ino, rmp->mp_dev, rmp->mp_ctime) == NULL) {
- /* No other process shares the text segment, so free it. */
- free_mem(rmp->mp_seg[T].mem_phys, rmp->mp_seg[T].mem_len);
- }
- /* Free the data and stack segments. */
- free_mem(rmp->mp_seg[D].mem_phys,
- rmp->mp_seg[S].mem_vir + rmp->mp_seg[S].mem_len - rmp->mp_seg[D].mem_vir);
-
- /* The process slot can only be freed if the parent has done a WAIT. */
- rmp->mp_exitstatus = (char) exit_status;
-
- p_mp = &mproc[rmp->mp_parent]; /* process' parent */
- pidarg = p_mp->mp_wpid; /* who's being waited for? */
- parent_waiting = p_mp->mp_flags & WAITING;
-
- right_child = /* child meets one of the 3 tests? */
- (pidarg == -1 || pidarg == rmp->mp_pid || -pidarg == rmp->mp_procgrp);
-
- if (parent_waiting && right_child) {
- cleanup(rmp); /* tell parent and release child slot */
- } else {
- rmp->mp_flags = IN_USE|ZOMBIE; /* parent not waiting, zombify child */
- sig_proc(p_mp, SIGCHLD); /* send parent a "child died" signal */
- }
-
- /* If the process has children, disinherit them. INIT is the new parent. */
- for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) {
- if (rmp->mp_flags & IN_USE && rmp->mp_parent == proc_nr) {
- /* 'rmp' now points to a child to be disinherited. */
- rmp->mp_parent = INIT_PROC_NR;
- parent_waiting = mproc[INIT_PROC_NR].mp_flags & WAITING;
- if (parent_waiting && (rmp->mp_flags & ZOMBIE)) cleanup(rmp);
- }
- }
-
- /* Send a hangup to the process' process group if it was a session leader. */
- if (procgrp != 0) check_sig(-procgrp, SIGHUP);
-}
-
-
-/*===========================================================================*
- * do_waitpid *
- *===========================================================================*/
-PUBLIC int do_waitpid()
-{
-/* A process wants to wait for a child to terminate. If one is already waiting,
- * go clean it up and let this WAIT call terminate. Otherwise, really wait.
- * Both WAIT and WAITPID are handled by this code.
- */
-
- register struct mproc *rp;
- int pidarg, options, children;
-
- /* A process calling WAIT never gets a reply in the usual way at the end
- * of the main loop (unless WNOHANG is set or no qualifying child exists).
- * If a child has already exited, the routine cleanup() sends the reply
- * to awaken the caller.
- */
-
- /* Set internal variables, depending on whether this is WAIT or WAITPID. */
- pidarg = (call_nr == WAIT ? -1 : m_in.pid); /* 1st param of waitpid */
- options = (call_nr == WAIT ? 0 : m_in.sig_nr); /* 3rd param of waitpid */
- if (pidarg == 0) pidarg = -mp->mp_procgrp; /* pidarg < 0 ==> proc grp */
-
- /* Is there a child waiting to be collected? At this point, pidarg != 0:
- * pidarg > 0 means pidarg is pid of a specific process to wait for
- * pidarg == -1 means wait for any child
- * pidarg < -1 means wait for any child whose process group = -pidarg
- */
- children = 0;
- for (rp = &mproc[0]; rp < &mproc[NR_PROCS]; rp++) {
- if ( (rp->mp_flags & IN_USE) && rp->mp_parent == who) {
- /* The value of pidarg determines which children qualify. */
- if (pidarg > 0 && pidarg != rp->mp_pid) continue;
- if (pidarg < -1 && -pidarg != rp->mp_procgrp) continue;
-
- children++; /* this child is acceptable */
- if (rp->mp_flags & ZOMBIE) {
- /* This child meets the pid test and has exited. */
- cleanup(rp); /* this child has already exited */
- return(SUSPEND);
- }
- if ((rp->mp_flags & STOPPED) && rp->mp_sigstatus) {
- /* This child meets the pid test and is being traced.*/
- mp->mp_reply.reply_res2 = 0177|(rp->mp_sigstatus << 8);
- rp->mp_sigstatus = 0;
- return(rp->mp_pid);
- }
- }
- }
-
- /* No qualifying child has exited. Wait for one, unless none exists. */
- if (children > 0) {
- /* At least 1 child meets the pid test exists, but has not exited. */
- if (options & WNOHANG) return(0); /* parent does not want to wait */
- mp->mp_flags |= WAITING; /* parent wants to wait */
- mp->mp_wpid = (pid_t) pidarg; /* save pid for later */
- return(SUSPEND); /* do not reply, let it wait */
- } else {
- /* No child even meets the pid test. Return error immediately. */
- return(ECHILD); /* no - parent has no children */
- }
-}
-
-
-/*===========================================================================*
- * cleanup *
- *===========================================================================*/
-PRIVATE void cleanup(child)
-register struct mproc *child; /* tells which process is exiting */
-{
-/* Finish off the exit of a process. The process has exited or been killed
- * by a signal, and its parent is waiting.
- */
-
- struct mproc *parent = &mproc[child->mp_parent];
- int exitstatus;
-
- /* Wake up the parent. */
- exitstatus = (child->mp_exitstatus << 8) | (child->mp_sigstatus & 0377);
- parent->mp_reply.reply_res2 = exitstatus;
- setreply(child->mp_parent, child->mp_pid);
- parent->mp_flags &= ~WAITING; /* parent no longer waiting */
-
- /* Release the process table entry. */
- child->mp_flags = 0;
- procs_in_use--;
-}
+++ /dev/null
-/* This file handles the 4 system calls that get and set uids and gids.
- * It also handles getpid(), setsid(), and getpgrp(). The code for each
- * one is so tiny that it hardly seemed worthwhile to make each a separate
- * function.
- */
-
-#include "mm.h"
-#include <minix/callnr.h>
-#include <signal.h>
-#include "mproc.h"
-#include "param.h"
-
-/*===========================================================================*
- * do_getset *
- *===========================================================================*/
-PUBLIC int do_getset()
-{
-/* Handle GETUID, GETGID, GETPID, GETPGRP, SETUID, SETGID, SETSID. The four
- * GETs and SETSID return their primary results in 'r'. GETUID, GETGID, and
- * GETPID also return secondary results (the effective IDs, or the parent
- * process ID) in 'reply_res2', which is returned to the user.
- */
-
- register struct mproc *rmp = mp;
- register int r;
-
- switch(call_nr) {
- case GETUID:
- r = rmp->mp_realuid;
- rmp->mp_reply.reply_res2 = rmp->mp_effuid;
- break;
-
- case GETGID:
- r = rmp->mp_realgid;
- rmp->mp_reply.reply_res2 = rmp->mp_effgid;
- break;
-
- case GETPID:
- r = mproc[who].mp_pid;
- rmp->mp_reply.reply_res2 = mproc[rmp->mp_parent].mp_pid;
- break;
-
- case SETUID:
- if (rmp->mp_realuid != (uid_t) m_in.usr_id &&
- rmp->mp_effuid != SUPER_USER)
- return(EPERM);
- rmp->mp_realuid = (uid_t) m_in.usr_id;
- rmp->mp_effuid = (uid_t) m_in.usr_id;
- tell_fs(SETUID, who, rmp->mp_realuid, rmp->mp_effuid);
- r = OK;
- break;
-
- case SETGID:
- if (rmp->mp_realgid != (gid_t) m_in.grp_id &&
- rmp->mp_effuid != SUPER_USER)
- return(EPERM);
- rmp->mp_realgid = (gid_t) m_in.grp_id;
- rmp->mp_effgid = (gid_t) m_in.grp_id;
- tell_fs(SETGID, who, rmp->mp_realgid, rmp->mp_effgid);
- r = OK;
- break;
-
- case SETSID:
- if (rmp->mp_procgrp == rmp->mp_pid) return(EPERM);
- rmp->mp_procgrp = rmp->mp_pid;
- tell_fs(SETSID, who, 0, 0);
- /*FALL THROUGH*/
-
- case GETPGRP:
- r = rmp->mp_procgrp;
- break;
-
- default:
- r = EINVAL;
- break;
- }
- return(r);
-}
+++ /dev/null
-/* EXTERN should be extern except in table.c */
-#ifdef _TABLE
-#undef EXTERN
-#define EXTERN
-#endif
-
-/* Global variables. */
-EXTERN struct mproc *mp; /* ptr to 'mproc' slot of current process */
-EXTERN int procs_in_use; /* how many processes are marked as IN_USE */
-
-/* The parameters of the call are kept here. */
-EXTERN message m_in; /* the incoming message itself is kept here. */
-EXTERN int who; /* caller's proc number */
-EXTERN int call_nr; /* system call number */
-
-extern _PROTOTYPE (int (*call_vec[]), (void) ); /* system call handlers */
-extern char core_name[]; /* file name where core images are produced */
-EXTERN sigset_t core_sset; /* which signals cause core images */
-EXTERN sigset_t ign_sset; /* which signals are by default ignored */
-
+++ /dev/null
-/* This file contains the main program of the memory manager and some related
- * procedures. When MINIX starts up, the kernel runs for a little while,
- * initializing itself and its tasks, and then it runs MM and FS. Both MM
- * and FS initialize themselves as far as they can. FS then makes a call to
- * MM, because MM has to wait for FS to acquire a RAM disk. MM asks the
- * kernel for all free memory and starts serving requests.
- *
- * The entry points into this file are:
- * main: starts MM running
- * setreply: set the reply to be sent to process making an MM system call
- */
-
-#include "mm.h"
-#include <minix/utils.h>
-#include <minix/callnr.h>
-#include <minix/com.h>
-#include <signal.h>
-#include <fcntl.h>
-#include <sys/ioc_memory.h>
-#include "mproc.h"
-#include "param.h"
-
-FORWARD _PROTOTYPE( void get_work, (void) );
-FORWARD _PROTOTYPE( void mm_init, (void) );
-
-#define click_to_round_k(n) \
- ((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024))
-
-/*===========================================================================*
- * main *
- *===========================================================================*/
-PUBLIC void main()
-{
-/* Main routine of the memory manager. */
-
- int result, proc_nr;
- struct mproc *rmp;
-
- mm_init(); /* initialize memory manager tables */
-
- /* This is MM's main loop- get work and do it, forever and forever. */
- while (TRUE) {
- get_work(); /* wait for an MM system call */
-
- /* Check for system notifications first. Special cases. */
- if (call_nr == HARD_STOP) { /* MINIX is shutting down */
- check_sig(-1, SIGKILL); /* kill all processes */
- sys_exit(0);
- /* never reached */
- } else if (call_nr == KSIG_PENDING) { /* signals pending */
- (void) ksig_pending();
- result = SUSPEND; /* don't reply */
- }
- /* Else, if the system call number is valid, perform the call. */
- else if ((unsigned) call_nr >= NCALLS) {
- result = ENOSYS;
- } else {
- result = (*call_vec[call_nr])();
- }
-
- /* Send the results back to the user to indicate completion. */
- if (result != SUSPEND) setreply(who, result);
-
- swap_in(); /* maybe a process can be swapped in? */
-
- /* Send out all pending reply messages, including the answer to
- * the call just made above. The processes must not be swapped out.
- */
- for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) {
- if ((rmp->mp_flags & (REPLY | ONSWAP)) == REPLY) {
- if (send(proc_nr, &rmp->mp_reply) != OK)
- panic("MM can't reply to", proc_nr);
- rmp->mp_flags &= ~REPLY;
- }
- }
- }
-}
-
-
-/*===========================================================================*
- * get_work *
- *===========================================================================*/
-PRIVATE void get_work()
-{
-/* Wait for the next message and extract useful information from it. */
-
- if (receive(ANY, &m_in) != OK) panic("MM receive error", NO_NUM);
- who = m_in.m_source; /* who sent the message */
- call_nr = m_in.m_type; /* system call number */
-
- /* Process slot of caller. Misuse MM's own process slot if the kernel is
- * calling. The can happen in case of pending kernel signals.
- */
- mp = &mproc[who < 0 ? PM_PROC_NR : who];
-}
-
-
-/*===========================================================================*
- * setreply *
- *===========================================================================*/
-PUBLIC void setreply(proc_nr, result)
-int proc_nr; /* process to reply to */
-int result; /* result of the call (usually OK or error #)*/
-{
-/* Fill in a reply message to be sent later to a user process. System calls
- * may occasionally fill in other fields, this is only for the main return
- * value, and for setting the "must send reply" flag.
- */
-
- register struct mproc *rmp = &mproc[proc_nr];
-
- rmp->mp_reply.reply_res = result;
- rmp->mp_flags |= REPLY; /* reply pending */
-
- if (rmp->mp_flags & ONSWAP)
- swap_inqueue(rmp); /* must swap this process back in */
-}
-
-
-/*===========================================================================*
- * mm_init *
- *===========================================================================*/
-PRIVATE void mm_init()
-{
-/* Initialize the memory manager. */
- int s;
- static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT,
- SIGEMT, SIGFPE, SIGUSR1, SIGSEGV, SIGUSR2 };
- static char ign_sigs[] = { SIGCHLD };
- register int proc_nr;
- register struct mproc *rmp;
- register char *sig_ptr;
- phys_clicks ram_clicks, total_clicks, minix_clicks, free_clicks;
- message mess;
- struct mem_map kernel_map[NR_LOCAL_SEGS];
- int mem;
-
- /* Build the set of signals which cause core dumps, and the set of signals
- * that are by default ignored.
- */
- sigemptyset(&core_sset);
- for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++)
- sigaddset(&core_sset, *sig_ptr);
- sigemptyset(&ign_sset);
- for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++)
- sigaddset(&ign_sset, *sig_ptr);
-
- /* Get the memory map of the kernel to see how much memory it uses. */
- if ((s=p_getmap(SYSTASK, kernel_map)) != OK)
- panic("MM couldn't get proc entry of SYSTASK",s);
- minix_clicks = (kernel_map[S].mem_phys + kernel_map[S].mem_len)
- - kernel_map[T].mem_phys;
-
- /* Initialize MM's tables. Request a copy of the system image table that
- * is defined at the kernel level to see which slots to fill in.
- */
- for (proc_nr = 0; proc_nr <= INIT_PROC_NR; proc_nr++) {
- rmp = &mproc[proc_nr];
- rmp->mp_flags |= IN_USE;
- if ((s=p_getmap(proc_nr, rmp->mp_seg)) != OK)
- panic("MM couldn't get proc entry",s);
- if (rmp->mp_seg[T].mem_len != 0) rmp->mp_flags |= SEPARATE;
- minix_clicks += (rmp->mp_seg[S].mem_phys + rmp->mp_seg[S].mem_len)
- - rmp->mp_seg[T].mem_phys;
- }
- mproc[INIT_PROC_NR].mp_pid = INIT_PID;
- sigemptyset(&mproc[INIT_PROC_NR].mp_ignore);
- sigemptyset(&mproc[INIT_PROC_NR].mp_catch);
- procs_in_use = LOW_USER + 1;
-
- /* Wait for FS to send a message telling the RAM disk size then go "on-line".
- */
- if (receive(FS_PROC_NR, &mess) != OK)
- panic("MM can't obtain RAM disk size from FS", NO_NUM);
-
- ram_clicks = mess.MEM_CHUNK_SIZE;
-
- /* Initialize tables to all physical mem. */
- mem_init(&free_clicks);
- total_clicks = minix_clicks + ram_clicks + free_clicks;
-
- /* Print memory information. */
- printf("Memory size=%uK ", click_to_round_k(total_clicks));
- printf("MINIX=%uK ", click_to_round_k(minix_clicks));
- printf("RAM disk=%uK ", click_to_round_k(ram_clicks));
- printf("Available=%uK\n\n", click_to_round_k(free_clicks));
-
- /* Tell FS to continue. */
- if (send(FS_PROC_NR, &mess) != OK)
- panic("MM can't sync up with FS", NO_NUM);
-
- /* Tell the memory task where my process table is for the sake of ps(1). */
- if ((mem = open("/dev/ram", O_RDWR)) != -1) {
- ioctl(mem, MIOCSPSINFO, (void *) mproc);
- close(mem);
- }
-}
+++ /dev/null
-/* Miscellaneous system calls. Author: Kees J. Bot
- * 31 Mar 2000
- * The entry points into this file are:
- * do_reboot: kill all processes, then reboot system
- * do_svrctl: memory manager control
- * do_getsysinfo: request copy of MM data structure
- */
-
-#include "mm.h"
-#include <minix/callnr.h>
-#include <signal.h>
-#include <sys/svrctl.h>
-#include <minix/com.h>
-#include <minix/utils.h>
-#include <string.h>
-#include "mproc.h"
-#include "param.h"
-
-FORWARD _PROTOTYPE( char *find_key, (const char *params, const char *key));
-
-/* MM gets a copy of all boot monitor parameters. */
-PRIVATE char monitor_params[128*sizeof(char *)];
-
-/*=====================================================================*
- * do_getsysinfo *
- *=====================================================================*/
-PUBLIC int do_getsysinfo()
-{
- return(OK);
-}
-
-
-/*=====================================================================*
- * do_reboot *
- *=====================================================================*/
-PUBLIC int do_reboot()
-{
- register struct mproc *rmp = mp;
- char monitor_code[32*sizeof(char *)];
-
- if (rmp->mp_effuid != SUPER_USER) return(EPERM);
-
- switch (m_in.reboot_flag) {
- case RBT_HALT:
- case RBT_REBOOT:
- case RBT_PANIC:
- case RBT_RESET:
- break;
- case RBT_MONITOR:
- if (m_in.reboot_size >= sizeof(monitor_code)) return(EINVAL);
- if (sys_datacopy(who, (vir_bytes) m_in.reboot_code,
- PM_PROC_NR, (vir_bytes) monitor_code,
- (phys_bytes) (m_in.reboot_size+1)) != OK) return(EFAULT);
- if (monitor_code[m_in.reboot_size] != 0) return(EINVAL);
- break;
- default:
- return(EINVAL);
- }
-
- check_sig(-1, SIGKILL); /* kill all processes except init */
- tell_fs(REBOOT,0,0,0); /* tell FS to prepare for shutdown */
-
- sys_abort(m_in.reboot_flag, PM_PROC_NR, monitor_code, m_in.reboot_size);
- sys_exit(0);
-}
-
-/*=====================================================================*
- * do_svrctl *
- *=====================================================================*/
-PUBLIC int do_svrctl()
-{
- static int initialized = 0;
- int s, req;
- vir_bytes ptr;
- req = m_in.svrctl_req;
- ptr = (vir_bytes) m_in.svrctl_argp;
-
- /* Initialize private copy of monitor parameters on first call. */
- if (! initialized) {
- if ((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK)
- printf("MM: Warning couldn't get copy of monitor params: %d\n",s);
- else
- initialized = 1;
- }
-
- /* Binary compatibility check. */
- if (req == SYSGETENV) {
-#if DEAD_CODE
- printf("SYSGETENV by %d (fix!)\n", who);
-#endif
- req = MMGETPARAM;
- }
-
- /* Is the request for the kernel? Forward it, except for SYSGETENV. */
- if (((req >> 8) & 0xFF) == 'S') {
-
- /* Simply forward call to the SYSTEM task. */
- return(sys_svrctl(who, req, mp->mp_effuid == SUPER_USER, ptr));
- }
-
- /* Control operations local to the MM. */
- switch(req) {
- case MMGETPARAM: {
- struct sysgetenv sysgetenv;
- char search_key[64];
- char *val_start;
- size_t val_len;
- size_t copy_len;
-
- /* Check if boot monitor parameters are in place. */
- if (! initialized) return(EAGAIN);
-
- /* Copy sysgetenv structure to MM. */
- if (sys_datacopy(who, ptr, SELF, (vir_bytes) &sysgetenv,
- sizeof(sysgetenv)) != OK) return(EFAULT);
-
- if (sysgetenv.keylen == 0) { /* copy all parameters */
- val_start = monitor_params;
- val_len = sizeof(monitor_params);
- }
- else { /* lookup value for key */
- /* Try to get a copy of the requested key. */
- if (sysgetenv.keylen > sizeof(search_key)) return(EINVAL);
- if ((s = sys_datacopy(who, (vir_bytes) sysgetenv.key,
- SELF, (vir_bytes) search_key, sysgetenv.keylen)) != OK)
- return(s);
-
- /* Make sure key is null-terminated and lookup value. */
- search_key[sysgetenv.keylen-1]= '\0';
- if ((val_start = find_key(monitor_params, search_key)) == NULL)
- return(ESRCH);
- val_len = strlen(val_start) + 1;
- }
-
- /* Value found, make the actual copy (as far as possible). */
- copy_len = MAX(val_len, sysgetenv.vallen);
- if ((s=sys_datacopy(SELF, (vir_bytes) val_start,
- who, (vir_bytes) sysgetenv.val, copy_len)) != OK)
- return(s);
-
- /* See if it fits in the client's buffer. */
- return (copy_len > sysgetenv.vallen) ? E2BIG : OK;
- }
- case MMSIGNON: {
- /* A user process becomes a task. Simulate an exit by
- * releasing a waiting parent and disinheriting children.
- */
- struct mproc *rmp;
- pid_t pidarg;
-
- if (mp->mp_effuid != SUPER_USER) return(EPERM);
-
- rmp = &mproc[mp->mp_parent];
- tell_fs(EXIT, who, 0, 0);
-
- pidarg = rmp->mp_wpid;
- if ((rmp->mp_flags & WAITING) && (pidarg == -1
- || pidarg == mp->mp_pid || -pidarg == mp->mp_procgrp))
- {
- /* Wake up the parent. */
- rmp->mp_reply.reply_res2 = 0;
- setreply(mp->mp_parent, mp->mp_pid);
- rmp->mp_flags &= ~WAITING;
- }
-
- /* Disinherit children. */
- for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) {
- if (rmp->mp_flags & IN_USE && rmp->mp_parent == who) {
- rmp->mp_parent = INIT_PROC_NR;
- }
- }
-
- /* Become like MM and FS. */
- mp->mp_pid = mp->mp_procgrp = 0;
- mp->mp_parent = 0;
- return(OK); }
-
-#if ENABLE_SWAP
- case MMSWAPON: {
- struct mmswapon swapon;
-
- if (mp->mp_effuid != SUPER_USER) return(EPERM);
-
- if (sys_datacopy(who, (phys_bytes) ptr,
- PM_PROC_NR, (phys_bytes) &swapon,
- (phys_bytes) sizeof(swapon)) != OK) return(EFAULT);
-
- return(swap_on(swapon.file, swapon.offset, swapon.size)); }
-
- case MMSWAPOFF: {
- if (mp->mp_effuid != SUPER_USER) return(EPERM);
-
- return(swap_off()); }
-#endif /* SWAP */
-
- default:
- return(EINVAL);
- }
-}
-
-/*==========================================================================*
- * find_key *
- *==========================================================================*/
-PRIVATE char *find_key(params,name)
-const char *params;
-const char *name;
-{
- register const char *namep;
- register char *envp;
-
- for (envp = (char *) params; *envp != 0;) {
- for (namep = name; *namep != 0 && *namep == *envp; namep++, envp++)
- ;
- if (*namep == '\0' && *envp == '=')
- return(envp + 1);
- while (*envp++ != 0)
- ;
- }
- return(NULL);
-}
-
+++ /dev/null
-/* This is the master header for mm. It includes some other files
- * and defines the principal constants.
- */
-#define _POSIX_SOURCE 1 /* tell headers to include POSIX stuff */
-#define _MINIX 1 /* tell headers to include MINIX stuff */
-#define _SYSTEM 1 /* tell headers that this is the kernel */
-
-/* The following are so basic, all the *.c files get them automatically. */
-#include <minix/config.h> /* MUST be first */
-#include <ansi.h> /* MUST be second */
-#include <sys/types.h>
-#include <minix/const.h>
-#include <minix/type.h>
-
-#include <fcntl.h>
-#include <unistd.h>
-#include <minix/syslib.h>
-
-#include <limits.h>
-#include <errno.h>
-
-#include "const.h"
-#include "type.h"
-#include "proto.h"
-#include "glo.h"
+++ /dev/null
-/* This table has one slot per process. It contains all the memory management
- * information for each process. Among other things, it defines the text, data
- * and stack segments, uids and gids, and various flags. The kernel and file
- * systems have tables that are also indexed by process, with the contents
- * of corresponding slots referring to the same process in all three.
- */
-
-EXTERN struct mproc {
- struct mem_map mp_seg[NR_LOCAL_SEGS]; /* points to text, data, stack */
- char mp_exitstatus; /* storage for status when process exits */
- char mp_sigstatus; /* storage for signal # for killed procs */
- pid_t mp_pid; /* process id */
- pid_t mp_procgrp; /* pid of process group (used for signals) */
- pid_t mp_wpid; /* pid this process is waiting for */
- int mp_parent; /* index of parent process */
-
- /* Real and effective uids and gids. */
- uid_t mp_realuid; /* process' real uid */
- uid_t mp_effuid; /* process' effective uid */
- gid_t mp_realgid; /* process' real gid */
- gid_t mp_effgid; /* process' effective gid */
-
- /* File identification for sharing. */
- ino_t mp_ino; /* inode number of file */
- dev_t mp_dev; /* device number of file system */
- time_t mp_ctime; /* inode changed time */
-
- /* Signal handling information. */
- sigset_t mp_ignore; /* 1 means ignore the signal, 0 means don't */
- sigset_t mp_catch; /* 1 means catch the signal, 0 means don't */
- sigset_t mp_sigmask; /* signals to be blocked */
- sigset_t mp_sigmask2; /* saved copy of mp_sigmask */
- sigset_t mp_sigpending; /* signals being blocked */
- struct sigaction mp_sigact[_NSIG + 1]; /* as in sigaction(2) */
- vir_bytes mp_sigreturn; /* address of C library __sigreturn function */
-
- /* Backwards compatibility for signals. */
- sighandler_t mp_func; /* all sigs vectored to a single user fcn */
-
- unsigned mp_flags; /* flag bits */
- vir_bytes mp_procargs; /* ptr to proc's initial stack arguments */
- struct mproc *mp_swapq; /* queue of procs waiting to be swapped in */
- message mp_reply; /* reply message to be sent to one */
-
- char mp_name[PROC_NAME_LEN]; /* process name */
-} mproc[NR_PROCS];
-
-/* Flag values */
-#define IN_USE 0x001 /* set when 'mproc' slot in use */
-#define WAITING 0x002 /* set by WAIT system call */
-#define ZOMBIE 0x004 /* set by EXIT, cleared by WAIT */
-#define PAUSED 0x008 /* set by PAUSE system call */
-#define ALARM_ON 0x010 /* set when SIGALRM timer started */
-#define SEPARATE 0x020 /* set if file is separate I & D space */
-#define TRACED 0x040 /* set if process is to be traced */
-#define STOPPED 0x080 /* set if process stopped for tracing */
-#define SIGSUSPENDED 0x100 /* set by SIGSUSPEND system call */
-#define REPLY 0x200 /* set if a reply message is pending */
-#define ONSWAP 0x400 /* set if data segment is swapped out */
-#define SWAPIN 0x800 /* set if on the "swap this in" queue */
-
-#define NIL_MPROC ((struct mproc *) 0)
+++ /dev/null
-/* The following names are synonyms for the variables in the input message. */
-#define addr m1_p1
-#define exec_name m1_p1
-#define exec_len m1_i1
-#define func m6_f1
-#define grp_id m1_i1
-#define namelen m1_i1
-#define pid m1_i1
-#define seconds m1_i1
-#define sig m6_i1
-#define stack_bytes m1_i2
-#define stack_ptr m1_p2
-#define status m1_i1
-#define usr_id m1_i1
-#define request m2_i2
-#define taddr m2_l1
-#define data m2_l2
-#define sig_nr m1_i2
-#define sig_nsa m1_p1
-#define sig_osa m1_p2
-#define sig_ret m1_p3
-#define sig_set m2_l1
-#define sig_how m2_i1
-#define sig_flags m2_i2
-#define sig_context m2_p1
-#ifdef _SIGMESSAGE
-#define sig_msg m1_i1
-#endif
-#define reboot_flag m1_i1
-#define reboot_code m1_p1
-#define reboot_size m1_i2
-#define svrctl_req m2_i1
-#define svrctl_argp m2_p1
-
-/* The following names are synonyms for the variables in a reply message. */
-#define reply_res m_type
-#define reply_res2 m2_i1
-#define reply_ptr m2_p1
-#define reply_mask m2_l1
-#define reply_trace m2_l2
-
-/* The following names are used to inform the FS about certain events. */
-#define tell_fs_arg1 m1_i1
-#define tell_fs_arg2 m1_i2
-#define tell_fs_arg3 m1_i3
-
+++ /dev/null
-#include "mm.h"
-#include <minix/config.h>
-#include <timers.h>
-#include <string.h>
-#include "../../kernel/const.h"
-#include "../../kernel/type.h"
-#include "../../kernel/proc.h"
-
-/* The entry points into this file are:
- * p_getmap: get memory map of given process
- * p_getsp: get stack pointer of given process
- */
-
-/*===========================================================================*
- * p_getmap *
- *===========================================================================*/
-PUBLIC int p_getmap(proc_nr, mem_map)
-int proc_nr; /* process to get map of */
-struct mem_map *mem_map; /* put memory map here */
-{
- struct proc p;
- int s;
-
- if ((s=sys_getproc(&p, proc_nr)) != OK)
- return(s);
- memcpy(mem_map, p.p_memmap, sizeof(p.p_memmap));
- return(OK);
-}
-
-/*===========================================================================*
- * p_getsp *
- *===========================================================================*/
-PUBLIC int p_getsp(proc_nr, sp)
-int proc_nr; /* process to get sp of */
-vir_bytes *sp; /* put stack pointer here */
-{
- struct proc p;
- int s;
-
- if ((s=sys_getproc(&p, proc_nr)) != OK)
- return(s);
- *sp = p.p_reg.sp;
- return(OK);
-}
-
+++ /dev/null
-/* Function prototypes. */
-
-struct mproc;
-struct stat;
-struct mem_map;
-
-/* alloc.c */
-_PROTOTYPE( phys_clicks alloc_mem, (phys_clicks clicks) );
-_PROTOTYPE( void free_mem, (phys_clicks base, phys_clicks clicks) );
-_PROTOTYPE( void mem_init, (phys_clicks *free) );
-#if ENABLE_SWAP
-_PROTOTYPE( int swap_on, (char *file, u32_t offset, u32_t size) );
-_PROTOTYPE( int swap_off, (void) );
-_PROTOTYPE( void swap_in, (void) );
-_PROTOTYPE( void swap_inqueue, (struct mproc *rmp) );
-#else /* !SWAP */
-#define swap_in() ((void)0)
-#define swap_inqueue(rmp) ((void)0)
-#endif /* !SWAP */
-
-/* break.c */
-_PROTOTYPE( int adjust, (struct mproc *rmp,
- vir_clicks data_clicks, vir_bytes sp) );
-_PROTOTYPE( int do_brk, (void) );
-_PROTOTYPE( int size_ok, (int file_type, vir_clicks tc, vir_clicks dc,
- vir_clicks sc, vir_clicks dvir, vir_clicks s_vir) );
-
-/* devio.c */
-_PROTOTYPE( int do_dev_io, (void) );
-_PROTOTYPE( int do_dev_io, (void) );
-
-/* exec.c */
-_PROTOTYPE( int do_exec, (void) );
-_PROTOTYPE( void rw_seg, (int rw, int fd, int proc, int seg,
- phys_bytes seg_bytes) );
-_PROTOTYPE( struct mproc *find_share, (struct mproc *mp_ign, Ino_t ino,
- Dev_t dev, time_t ctime) );
-
-/* forkexit.c */
-_PROTOTYPE( int do_fork, (void) );
-_PROTOTYPE( int do_mm_exit, (void) );
-_PROTOTYPE( int do_waitpid, (void) );
-_PROTOTYPE( void mm_exit, (struct mproc *rmp, int exit_status) );
-
-/* getset.c */
-_PROTOTYPE( int do_getset, (void) );
-
-/* main.c */
-_PROTOTYPE( void main, (void) );
-
-/* misc.c */
-_PROTOTYPE( int do_reboot, (void) );
-_PROTOTYPE( int do_getsysinfo, (void) );
-_PROTOTYPE( int do_svrctl, (void) );
-_PROTOTYPE( int do_mstats, (void) );
-
-#if (MACHINE == MACINTOSH)
-_PROTOTYPE( phys_clicks start_click, (void) );
-#endif
-
-_PROTOTYPE( void setreply, (int proc_nr, int result) );
-
-/* signal.c */
-_PROTOTYPE( int do_alarm, (void) );
-_PROTOTYPE( int do_kill, (void) );
-_PROTOTYPE( int ksig_pending, (void) );
-_PROTOTYPE( int do_ksig, (void) );
-_PROTOTYPE( int do_pause, (void) );
-_PROTOTYPE( int set_alarm, (int proc_nr, int sec) );
-_PROTOTYPE( int check_sig, (pid_t proc_id, int signo) );
-_PROTOTYPE( void sig_proc, (struct mproc *rmp, int sig_nr) );
-_PROTOTYPE( int do_sigaction, (void) );
-_PROTOTYPE( int do_sigpending, (void) );
-_PROTOTYPE( int do_sigprocmask, (void) );
-_PROTOTYPE( int do_sigreturn, (void) );
-_PROTOTYPE( int do_sigsuspend, (void) );
-_PROTOTYPE( void check_pending, (struct mproc *rmp) );
-
-/* trace.c */
-_PROTOTYPE( int do_trace, (void) );
-_PROTOTYPE( void stop_proc, (struct mproc *rmp, int sig_nr) );
-
-/* utility.c */
-_PROTOTYPE( int allowed, (char *name_buf, struct stat *s_buf, int mask) );
-_PROTOTYPE( int no_sys, (void) );
-_PROTOTYPE( void panic, (char *format, int num) );
-_PROTOTYPE( void tell_fs, (int what, int p1, int p2, int p3) );
-
-/* procutils.c */
-_PROTOTYPE( int p_getsp, (int proc_nr, vir_bytes *sp) );
-_PROTOTYPE( int p_getmap, (int proc_nr, struct mem_map *mem_map) );
+++ /dev/null
-/* This file handles signals, which are asynchronous events and are generally
- * a messy and unpleasant business. Signals can be generated by the KILL
- * system call, or from the keyboard (SIGINT) or from the clock (SIGALRM).
- * In all cases control eventually passes to check_sig() to see which processes
- * can be signaled. The actual signaling is done by sig_proc().
- *
- * The entry points into this file are:
- * do_sigaction: perform the SIGACTION system call
- * do_sigpending: perform the SIGPENDING system call
- * do_sigprocmask: perform the SIGPROCMASK system call
- * do_sigreturn: perform the SIGRETURN system call
- * do_sigsuspend: perform the SIGSUSPEND system call
- * do_kill: perform the KILL system call
- * do_ksig: accept a signal originating in the kernel (e.g., SIGINT)
- * do_alarm: perform the ALARM system call by calling set_alarm()
- * set_alarm: tell the clock task to start or stop a timer
- * do_pause: perform the PAUSE system call
- * ksig_pending: the kernel notified about pending signals
- * sig_proc: interrupt or terminate a signaled process
- * check_sig: check which processes to signal with sig_proc()
- * check_pending: check if a pending signal can now be delivered
- */
-
-#include "mm.h"
-#include <minix/utils.h>
-#include <sys/stat.h>
-#include <minix/callnr.h>
-#include <minix/com.h>
-#include <signal.h>
-#include <sys/sigcontext.h>
-#include <string.h>
-#include "mproc.h"
-#include "param.h"
-
-#define CORE_MODE 0777 /* mode to use on core image files */
-#define DUMPED 0200 /* bit set in status when core dumped */
-
-FORWARD _PROTOTYPE( void dump_core, (struct mproc *rmp) );
-FORWARD _PROTOTYPE( void unpause, (int pro) );
-FORWARD _PROTOTYPE( void handle_ksig, (int proc_nr, sigset_t sig_map) );
-
-
-/*===========================================================================*
- * do_sigaction *
- *===========================================================================*/
-PUBLIC int do_sigaction()
-{
- int r;
- struct sigaction svec;
- struct sigaction *svp;
-
- if (m_in.sig_nr == SIGKILL) return(OK);
- if (m_in.sig_nr < 1 || m_in.sig_nr > _NSIG) return (EINVAL);
- svp = &mp->mp_sigact[m_in.sig_nr];
- if ((struct sigaction *) m_in.sig_osa != (struct sigaction *) NULL) {
- r = sys_datacopy(PM_PROC_NR,(vir_bytes) svp,
- who, (vir_bytes) m_in.sig_osa, (phys_bytes) sizeof(svec));
- if (r != OK) return(r);
- }
-
- if ((struct sigaction *) m_in.sig_nsa == (struct sigaction *) NULL)
- return(OK);
-
- /* Read in the sigaction structure. */
- r = sys_datacopy(who, (vir_bytes) m_in.sig_nsa,
- PM_PROC_NR, (vir_bytes) &svec, (phys_bytes) sizeof(svec));
- if (r != OK) return(r);
-
- if (svec.sa_handler == SIG_IGN) {
- sigaddset(&mp->mp_ignore, m_in.sig_nr);
- sigdelset(&mp->mp_sigpending, m_in.sig_nr);
- sigdelset(&mp->mp_catch, m_in.sig_nr);
- } else {
- sigdelset(&mp->mp_ignore, m_in.sig_nr);
- if (svec.sa_handler == SIG_DFL)
- sigdelset(&mp->mp_catch, m_in.sig_nr);
- else
- sigaddset(&mp->mp_catch, m_in.sig_nr);
- }
- mp->mp_sigact[m_in.sig_nr].sa_handler = svec.sa_handler;
- sigdelset(&svec.sa_mask, SIGKILL);
- mp->mp_sigact[m_in.sig_nr].sa_mask = svec.sa_mask;
- mp->mp_sigact[m_in.sig_nr].sa_flags = svec.sa_flags;
- mp->mp_sigreturn = (vir_bytes) m_in.sig_ret;
- return(OK);
-}
-
-/*===========================================================================*
- * do_sigpending *
- *===========================================================================*/
-PUBLIC int do_sigpending()
-{
- mp->mp_reply.reply_mask = (long) mp->mp_sigpending;
- return OK;
-}
-
-/*===========================================================================*
- * do_sigprocmask *
- *===========================================================================*/
-PUBLIC int do_sigprocmask()
-{
-/* Note that the library interface passes the actual mask in sigmask_set,
- * not a pointer to the mask, in order to save a copy. Similarly,
- * the old mask is placed in the return message which the library
- * interface copies (if requested) to the user specified address.
- *
- * The library interface must set SIG_INQUIRE if the 'act' argument
- * is NULL.
- */
-
- int i;
-
- mp->mp_reply.reply_mask = (long) mp->mp_sigmask;
-
- switch (m_in.sig_how) {
- case SIG_BLOCK:
- sigdelset((sigset_t *)&m_in.sig_set, SIGKILL);
- for (i = 1; i <= _NSIG; i++) {
- if (sigismember((sigset_t *)&m_in.sig_set, i))
- sigaddset(&mp->mp_sigmask, i);
- }
- break;
-
- case SIG_UNBLOCK:
- for (i = 1; i <= _NSIG; i++) {
- if (sigismember((sigset_t *)&m_in.sig_set, i))
- sigdelset(&mp->mp_sigmask, i);
- }
- check_pending(mp);
- break;
-
- case SIG_SETMASK:
- sigdelset((sigset_t *) &m_in.sig_set, SIGKILL);
- mp->mp_sigmask = (sigset_t) m_in.sig_set;
- check_pending(mp);
- break;
-
- case SIG_INQUIRE:
- break;
-
- default:
- return(EINVAL);
- break;
- }
- return OK;
-}
-
-/*===========================================================================*
- * do_sigsuspend *
- *===========================================================================*/
-PUBLIC int do_sigsuspend()
-{
- mp->mp_sigmask2 = mp->mp_sigmask; /* save the old mask */
- mp->mp_sigmask = (sigset_t) m_in.sig_set;
- sigdelset(&mp->mp_sigmask, SIGKILL);
- mp->mp_flags |= SIGSUSPENDED;
- check_pending(mp);
- return(SUSPEND);
-}
-
-
-/*===========================================================================*
- * do_sigreturn *
- *===========================================================================*/
-PUBLIC int do_sigreturn()
-{
-/* A user signal handler is done. Restore context and check for
- * pending unblocked signals.
- */
-
- int r;
-
- mp->mp_sigmask = (sigset_t) m_in.sig_set;
- sigdelset(&mp->mp_sigmask, SIGKILL);
-
- r = sys_sigreturn(who, (struct sigmsg *) m_in.sig_context, m_in.sig_flags);
- check_pending(mp);
- return(r);
-}
-
-/*===========================================================================*
- * do_kill *
- *===========================================================================*/
-PUBLIC int do_kill()
-{
-/* Perform the kill(pid, signo) system call. */
-
- return check_sig(m_in.pid, m_in.sig_nr);
-}
-
-/*===========================================================================*
- * do_ksig_pending *
- *===========================================================================*/
-PUBLIC int ksig_pending()
-{
-/* The kernel has notified the MM about pending signals. Request pending
- * signals until all signals are handled. If there are no more signals,
- * NONE is returned in the process number field.
- */
- int proc_nr;
- sigset_t sig_map;
-
- while (TRUE) {
- sys_getsig(&proc_nr, &sig_map); /* get an arbitrary pending signal */
- if (NONE == proc_nr) { /* stop if no more pending signals */
- break;
- } else {
- handle_ksig(proc_nr, sig_map); /* handle the receive signal */
- }
- }
- return(SUSPEND); /* prevents sending reply */
-}
-
-/*===========================================================================*
- * do_ksig *
- *===========================================================================*/
-PUBLIC int do_ksig()
-{
-/* Certain signals, such as segmentation violations and DEL, originate in the
- * kernel. When the kernel detects such signals, it sets bits in a bit map.
- * As soon as MM is awaiting new work, the kernel sends MM a message containing
- * the process slot and bit map. That message comes here. The File System
- * also uses this mechanism to signal writing on broken pipes (SIGPIPE).
- */
- int proc_nr;
- sigset_t sig_map;
-
- /* Only kernel may make this call. */
- if (who != HARDWARE) return(EPERM);
- proc_nr = m_in.SIG_PROC;
- sig_map = (sigset_t) m_in.SIG_MAP;
- handle_ksig(proc_nr, sig_map);
- return(SUSPEND);
-}
-
-/*===========================================================================*
- * handle_ksig *
- *===========================================================================*/
-PRIVATE void handle_ksig(proc_nr, sig_map)
-int proc_nr;
-sigset_t sig_map;
-{
- register struct mproc *rmp;
- int i;
- pid_t proc_id, id;
-
- rmp = &mproc[proc_nr];
- if ((rmp->mp_flags & (IN_USE | ZOMBIE)) != IN_USE) return;
- proc_id = rmp->mp_pid;
- mp = &mproc[0]; /* pretend kernel signals are from MM */
- mp->mp_procgrp = rmp->mp_procgrp; /* get process group right */
-
- /* Check each bit in turn to see if a signal is to be sent. Unlike
- * kill(), the kernel may collect several unrelated signals for a
- * process and pass them to MM in one blow. Thus loop on the bit
- * map. For SIGINT and SIGQUIT, use proc_id 0 to indicate a broadcast
- * to the recipient's process group. For SIGKILL, use proc_id -1 to
- * indicate a systemwide broadcast.
- */
- for (i = 1; i <= _NSIG; i++) {
- if (!sigismember(&sig_map, i)) continue;
- switch (i) {
- case SIGINT:
- case SIGQUIT:
- id = 0; break; /* broadcast to process group */
- case SIGKILL:
- id = -1; break; /* broadcast to all except INIT */
- case SIGALRM:
- /* Disregard SIGALRM when the target process has not
- * requested an alarm. This only applies for a KERNEL
- * generated signal.
- */
- if ((rmp->mp_flags & ALARM_ON) == 0) continue;
- rmp->mp_flags &= ~ALARM_ON;
- /* fall through */
- default:
- id = proc_id;
- break;
- }
- check_sig(id, i);
- sys_endsig(proc_nr); /* tell kernel it's done */
- }
-}
-
-
-/*===========================================================================*
- * do_alarm *
- *===========================================================================*/
-PUBLIC int do_alarm()
-{
-/* Perform the alarm(seconds) system call. */
- return(set_alarm(who, m_in.seconds));
-}
-
-
-/*===========================================================================*
- * set_alarm *
- *===========================================================================*/
-PUBLIC int set_alarm(proc_nr, sec)
-int proc_nr; /* process that wants the alarm */
-int sec; /* how many seconds delay before the signal */
-{
-/* This routine is used by do_alarm() to set the alarm timer. It is also used
- * to turn the timer off when a process exits with the timer still on.
- */
- clock_t ticks; /* number of ticks for alarm */
- int remaining; /* previous time left in seconds */
- int s;
-
- if (sec != 0) mproc[proc_nr].mp_flags |= ALARM_ON;
- else mproc[proc_nr].mp_flags &= ~ALARM_ON;
-
- /* Tell the clock task to provide a signal message when the time comes.
- *
- * Large delays cause a lot of problems. First, the alarm system call
- * takes an unsigned seconds count and the library has cast it to an int.
- * That probably works, but on return the library will convert "negative"
- * unsigneds to errors. Presumably no one checks for these errors, so
- * force this call through. Second, If unsigned and long have the same
- * size, converting from seconds to ticks can easily overflow. Finally,
- * the kernel has similar overflow bugs adding ticks.
- *
- * Fixing this requires a lot of ugly casts to fit the wrong interface
- * types and to avoid overflow traps. ALRM_EXP_TIME has the right type
- * (clock_t) although it is declared as long. How can variables like
- * this be declared properly without combinatorial explosion of message
- * types?
- */
- ticks = (clock_t) (HZ * (unsigned long) (unsigned) sec);
- if ( (unsigned long) ticks / HZ != (unsigned) sec)
- ticks = LONG_MAX; /* eternity (really TMR_NEVER) */
-
- if ((s=sys_signalrm(proc_nr, &ticks)) != OK)
- panic("MM couldn't set signal alarm", s);
-
- remaining = (int) ((ticks + (HZ-1))/HZ);
- if (remaining < 0) remaining = INT_MAX; /* true value is too large */
- return(remaining);
-}
-
-
-/*===========================================================================*
- * do_pause *
- *===========================================================================*/
-PUBLIC int do_pause()
-{
-/* Perform the pause() system call. */
-
- mp->mp_flags |= PAUSED;
- return(SUSPEND);
-}
-
-
-/*===========================================================================*
- * sig_proc *
- *===========================================================================*/
-PUBLIC void sig_proc(rmp, signo)
-register struct mproc *rmp; /* pointer to the process to be signaled */
-int signo; /* signal to send to process (1 to _NSIG) */
-{
-/* Send a signal to a process. Check to see if the signal is to be caught,
- * ignored, or blocked. If the signal is to be caught, coordinate with
- * KERNEL to push a sigcontext structure and a sigframe structure onto
- * the catcher's stack. Also, KERNEL will reset the program counter and
- * stack pointer, so that when the process next runs, it will be executing
- * the signal handler. When the signal handler returns, sigreturn(2)
- * will be called. Then KERNEL will restore the signal context from the
- * sigcontext structure.
- *
- * If there is insufficient stack space, kill the process.
- */
-
- vir_bytes new_sp;
- int s;
- int slot;
- int sigflags;
- struct sigmsg sm;
-
- slot = (int) (rmp - mproc);
- if ((rmp->mp_flags & (IN_USE | ZOMBIE)) != IN_USE) {
- printf("MM: signal %d sent to %s process %d\n",
- (rmp->mp_flags & ZOMBIE) ? "zombie" : "dead", signo, slot);
- panic("", NO_NUM);
- }
- if ((rmp->mp_flags & TRACED) && signo != SIGKILL) {
- /* A traced process has special handling. */
- unpause(slot);
- stop_proc(rmp, signo); /* a signal causes it to stop */
- return;
- }
- /* Some signals are ignored by default. */
- if (sigismember(&rmp->mp_ignore, signo)) return;
-
- if (sigismember(&rmp->mp_sigmask, signo)) {
- /* Signal should be blocked. */
- sigaddset(&rmp->mp_sigpending, signo);
- return;
- }
- sigflags = rmp->mp_sigact[signo].sa_flags;
- if (sigismember(&rmp->mp_catch, signo)) {
- if (rmp->mp_flags & ONSWAP) {
- /* Process is swapped out, leave signal pending. */
- sigaddset(&rmp->mp_sigpending, signo);
- swap_inqueue(rmp);
- return;
- }
- if (rmp->mp_flags & SIGSUSPENDED)
- sm.sm_mask = rmp->mp_sigmask2;
- else
- sm.sm_mask = rmp->mp_sigmask;
- sm.sm_signo = signo;
- sm.sm_sighandler = (vir_bytes) rmp->mp_sigact[signo].sa_handler;
- sm.sm_sigreturn = rmp->mp_sigreturn;
- if ((s=p_getsp(slot, &new_sp)) != OK)
- panic("MM couldn't get new stack pointer",s);
- sm.sm_stkptr = new_sp;
-
- /* Make room for the sigcontext and sigframe struct. */
- new_sp -= sizeof(struct sigcontext)
- + 3 * sizeof(char *) + 2 * sizeof(int);
-
- if (adjust(rmp, rmp->mp_seg[D].mem_len, new_sp) != OK)
- goto doterminate;
-
- rmp->mp_sigmask |= rmp->mp_sigact[signo].sa_mask;
- if (sigflags & SA_NODEFER)
- sigdelset(&rmp->mp_sigmask, signo);
- else
- sigaddset(&rmp->mp_sigmask, signo);
-
- if (sigflags & SA_RESETHAND) {
- sigdelset(&rmp->mp_catch, signo);
- rmp->mp_sigact[signo].sa_handler = SIG_DFL;
- }
-
- sys_sigsend(slot, &sm);
- sigdelset(&rmp->mp_sigpending, signo);
- /* If process is hanging on PAUSE, WAIT, SIGSUSPEND, tty, pipe, etc.,
- * release it.
- */
- unpause(slot);
- return;
- }
-doterminate:
- /* Signal should not or cannot be caught. Take default action. */
- if (sigismember(&ign_sset, signo)) return;
-
- rmp->mp_sigstatus = (char) signo;
- if (sigismember(&core_sset, signo)) {
- if (rmp->mp_flags & ONSWAP) {
- /* Process is swapped out, leave signal pending. */
- sigaddset(&rmp->mp_sigpending, signo);
- swap_inqueue(rmp);
- return;
- }
- /* Switch to the user's FS environment and dump core. */
- tell_fs(CHDIR, slot, FALSE, 0);
- dump_core(rmp);
- }
- mm_exit(rmp, 0); /* terminate process */
-}
-
-
-/*===========================================================================*
- * check_sig *
- *===========================================================================*/
-PUBLIC int check_sig(proc_id, signo)
-pid_t proc_id; /* pid of proc to sig, or 0 or -1, or -pgrp */
-int signo; /* signal to send to process (0 to _NSIG) */
-{
-/* Check to see if it is possible to send a signal. The signal may have to be
- * sent to a group of processes. This routine is invoked by the KILL system
- * call, and also when the kernel catches a DEL or other signal.
- */
-
- register struct mproc *rmp;
- int count; /* count # of signals sent */
- int error_code;
-
- if (signo < 0 || signo > _NSIG) return(EINVAL);
-
- /* Return EINVAL for attempts to send SIGKILL to INIT alone. */
- if (proc_id == INIT_PID && signo == SIGKILL) return(EINVAL);
-
- /* Search the proc table for processes to signal. (See forkexit.c about
- * pid magic.)
- */
- count = 0;
- error_code = ESRCH;
- for (rmp = &mproc[INIT_PROC_NR]; rmp < &mproc[NR_PROCS]; rmp++) {
- if (!(rmp->mp_flags & IN_USE)) continue;
- if ((rmp->mp_flags & ZOMBIE) && signo != 0) continue;
-
- /* Check for selection. */
- if (proc_id > 0 && proc_id != rmp->mp_pid) continue;
- if (proc_id == 0 && mp->mp_procgrp != rmp->mp_procgrp) continue;
- if (proc_id == -1 && rmp->mp_pid <= INIT_PID) continue;
- if (proc_id < -1 && rmp->mp_procgrp != -proc_id) continue;
-
- /* Check for permission. */
- if (mp->mp_effuid != SUPER_USER
- && mp->mp_realuid != rmp->mp_realuid
- && mp->mp_effuid != rmp->mp_realuid
- && mp->mp_realuid != rmp->mp_effuid
- && mp->mp_effuid != rmp->mp_effuid) {
- error_code = EPERM;
- continue;
- }
-
- count++;
- if (signo == 0) continue;
-
- /* 'sig_proc' will handle the disposition of the signal. The
- * signal may be caught, blocked, ignored, or cause process
- * termination, possibly with core dump.
- */
- sig_proc(rmp, signo);
-
- if (proc_id > 0) break; /* only one process being signaled */
- }
-
- /* If the calling process has killed itself, don't reply. */
- if ((mp->mp_flags & (IN_USE | ZOMBIE)) != IN_USE) return(SUSPEND);
- return(count > 0 ? OK : error_code);
-}
-
-
-/*===========================================================================*
- * check_pending *
- *===========================================================================*/
-PUBLIC void check_pending(rmp)
-register struct mproc *rmp;
-{
- /* Check to see if any pending signals have been unblocked. The
- * first such signal found is delivered.
- *
- * If multiple pending unmasked signals are found, they will be
- * delivered sequentially.
- *
- * There are several places in this file where the signal mask is
- * changed. At each such place, check_pending() should be called to
- * check for newly unblocked signals.
- */
-
- int i;
-
- for (i = 1; i <= _NSIG; i++) {
- if (sigismember(&rmp->mp_sigpending, i) &&
- !sigismember(&rmp->mp_sigmask, i)) {
- sigdelset(&rmp->mp_sigpending, i);
- sig_proc(rmp, i);
- break;
- }
- }
-}
-
-
-/*===========================================================================*
- * unpause *
- *===========================================================================*/
-PRIVATE void unpause(pro)
-int pro; /* which process number */
-{
-/* A signal is to be sent to a process. If that process is hanging on a
- * system call, the system call must be terminated with EINTR. Possible
- * calls are PAUSE, WAIT, READ and WRITE, the latter two for pipes and ttys.
- * First check if the process is hanging on an MM call. If not, tell FS,
- * so it can check for READs and WRITEs from pipes, ttys and the like.
- */
-
- register struct mproc *rmp;
-
- rmp = &mproc[pro];
-
- /* Check to see if process is hanging on a PAUSE, WAIT or SIGSUSPEND call. */
- if (rmp->mp_flags & (PAUSED | WAITING | SIGSUSPENDED)) {
- rmp->mp_flags &= ~(PAUSED | WAITING | SIGSUSPENDED);
- setreply(pro, EINTR);
- return;
- }
-
- /* Process is not hanging on an MM call. Ask FS to take a look. */
- tell_fs(UNPAUSE, pro, 0, 0);
-}
-
-
-/*===========================================================================*
- * dump_core *
- *===========================================================================*/
-PRIVATE void dump_core(rmp)
-register struct mproc *rmp; /* whose core is to be dumped */
-{
-/* Make a core dump on the file "core", if possible. */
-
- int s, fd, fake_fd, nr_written, seg, slot;
- char *buf;
- vir_bytes current_sp;
- phys_bytes left; /* careful; 64K might overflow vir_bytes */
- unsigned nr_to_write; /* unsigned for arg to write() but < INT_MAX */
- long trace_data, trace_off;
-
- slot = (int) (rmp - mproc);
-
- /* Can core file be written? We are operating in the user's FS environment,
- * so no special permission checks are needed.
- */
- if (rmp->mp_realuid != rmp->mp_effuid) return;
- if ( (fd = open(core_name, O_WRONLY | O_CREAT | O_TRUNC | O_NONBLOCK,
- CORE_MODE)) < 0) return;
- rmp->mp_sigstatus |= DUMPED;
-
- /* Make sure the stack segment is up to date.
- * We don't want adjust() to fail unless current_sp is preposterous,
- * but it might fail due to safety checking. Also, we don't really want
- * the adjust() for sending a signal to fail due to safety checking.
- * Maybe make SAFETY_BYTES a parameter.
- */
- if ((s=p_getsp(slot, ¤t_sp)) != OK)
- panic("MM couldn't get new stack pointer",s);
- adjust(rmp, rmp->mp_seg[D].mem_len, current_sp);
-
- /* Write the memory map of all segments to begin the core file. */
- if (write(fd, (char *) rmp->mp_seg, (unsigned) sizeof rmp->mp_seg)
- != (unsigned) sizeof rmp->mp_seg) {
- close(fd);
- return;
- }
-
- /* Write out the whole kernel process table entry to get the regs. */
- trace_off = 0;
- while (sys_trace(3, slot, trace_off, &trace_data) == OK) {
- if (write(fd, (char *) &trace_data, (unsigned) sizeof (long))
- != (unsigned) sizeof (long)) {
- close(fd);
- return;
- }
- trace_off += sizeof (long);
- }
-
- /* Loop through segments and write the segments themselves out. */
- for (seg = 0; seg < NR_LOCAL_SEGS; seg++) {
- rw_seg(1, fd, slot, seg,
- (phys_bytes) rmp->mp_seg[seg].mem_len << CLICK_SHIFT);
- }
- close(fd);
-}
+++ /dev/null
-/* This file contains the table used to map system call numbers onto the
- * routines that perform them.
- */
-
-#define _TABLE
-
-#include "mm.h"
-#include <minix/callnr.h>
-#include <signal.h>
-#include "mproc.h"
-#include "param.h"
-
-/* Miscellaneous */
-char core_name[] = "core"; /* file name where core images are produced */
-
-_PROTOTYPE (int (*call_vec[NCALLS]), (void) ) = {
- no_sys, /* 0 = unused */
- do_mm_exit, /* 1 = exit */
- do_fork, /* 2 = fork */
- no_sys, /* 3 = read */
- no_sys, /* 4 = write */
- no_sys, /* 5 = open */
- no_sys, /* 6 = close */
- do_waitpid, /* 7 = wait */
- no_sys, /* 8 = creat */
- no_sys, /* 9 = link */
- no_sys, /* 10 = unlink */
- do_waitpid, /* 11 = waitpid */
- no_sys, /* 12 = chdir */
- no_sys, /* 13 = time */
- no_sys, /* 14 = mknod */
- no_sys, /* 15 = chmod */
- no_sys, /* 16 = chown */
- do_brk, /* 17 = break */
- no_sys, /* 18 = stat */
- no_sys, /* 19 = lseek */
- do_getset, /* 20 = getpid */
- no_sys, /* 21 = mount */
- no_sys, /* 22 = umount */
- do_getset, /* 23 = setuid */
- do_getset, /* 24 = getuid */
- no_sys, /* 25 = stime */
- do_trace, /* 26 = ptrace */
- do_alarm, /* 27 = alarm */
- no_sys, /* 28 = fstat */
- do_pause, /* 29 = pause */
- no_sys, /* 30 = utime */
- no_sys, /* 31 = (stty) */
- no_sys, /* 32 = (gtty) */
- no_sys, /* 33 = access */
- no_sys, /* 34 = (nice) */
- no_sys, /* 35 = (ftime) */
- no_sys, /* 36 = sync */
- do_kill, /* 37 = kill */
- no_sys, /* 38 = rename */
- no_sys, /* 39 = mkdir */
- no_sys, /* 40 = rmdir */
- no_sys, /* 41 = dup */
- no_sys, /* 42 = pipe */
- no_sys, /* 43 = times */
- no_sys, /* 44 = (prof) */
- no_sys, /* 45 = unused */
- do_getset, /* 46 = setgid */
- do_getset, /* 47 = getgid */
- no_sys, /* 48 = (signal)*/
- no_sys, /* 49 = unused */
- no_sys, /* 50 = unused */
- no_sys, /* 51 = (acct) */
- no_sys, /* 52 = (phys) */
- no_sys, /* 53 = (lock) */
- no_sys, /* 54 = ioctl */
- no_sys, /* 55 = fcntl */
- no_sys, /* 56 = (mpx) */
- no_sys, /* 57 = unused */
- no_sys, /* 58 = unused */
- do_exec, /* 59 = execve */
- no_sys, /* 60 = umask */
- no_sys, /* 61 = chroot */
- do_getset, /* 62 = setsid */
- do_getset, /* 63 = getpgrp */
-
- do_ksig, /* 64 = KSIG: signals originating in the kernel */
- no_sys, /* 65 = UNPAUSE */
- no_sys, /* 66 = unused */
- no_sys, /* 67 = REVIVE */
- no_sys, /* 68 = TASK_REPLY */
- no_sys, /* 69 = unused */
- no_sys, /* 70 = unused */
- do_sigaction, /* 71 = sigaction */
- do_sigsuspend, /* 72 = sigsuspend */
- do_sigpending, /* 73 = sigpending */
- do_sigprocmask, /* 74 = sigprocmask */
- do_sigreturn, /* 75 = sigreturn */
- do_reboot, /* 76 = reboot */
- do_svrctl, /* 77 = svrctl */
-
- no_sys, /* 78 = cmostime */
- do_getsysinfo, /* 79 = getsysinfo */
-#if ENABLE_MESSAGE_STATS
- do_mstats, /* 80 = mstats */
-#else
- no_sys,
-#endif
- no_sys, /* 81 = unused */
- no_sys, /* 82 = unused */
-};
-/* This should not fail with "array size is negative": */
-extern int dummy[sizeof(call_vec) == NCALLS * sizeof(call_vec[0]) ? 1 : -1];
+++ /dev/null
-/* This file handles the memory manager's part of debugging, using the
- * ptrace system call. Most of the commands are passed on to the system
- * task for completion.
- *
- * The debugging commands available are:
- * T_STOP stop the process
- * T_OK enable tracing by parent for this process
- * T_GETINS return value from instruction space
- * T_GETDATA return value from data space
- * T_GETUSER return value from user process table
- * T_SETINS set value in instruction space
- * T_SETDATA set value in data space
- * T_SETUSER set value in user process table
- * T_RESUME resume execution
- * T_EXIT exit
- * T_STEP set trace bit
- *
- * The T_OK and T_EXIT commands are handled here, and the T_RESUME and
- * T_STEP commands are partially handled here and completed by the system
- * task. The rest are handled entirely by the system task.
- */
-
-#include "mm.h"
-#include <minix/com.h>
-#include <sys/ptrace.h>
-#include <signal.h>
-#include "mproc.h"
-#include "param.h"
-
-#define NIL_MPROC ((struct mproc *) 0)
-
-FORWARD _PROTOTYPE( struct mproc *findproc, (pid_t lpid) );
-
-/*===========================================================================*
- * do_trace *
- *===========================================================================*/
-PUBLIC int do_trace()
-{
- register struct mproc *child;
-
- /* the T_OK call is made by the child fork of the debugger before it execs
- * the process to be traced
- */
- if (m_in.request == T_OK) { /* enable tracing by parent for this proc */
- mp->mp_flags |= TRACED;
- mp->mp_reply.reply_trace = 0;
- return(OK);
- }
- if ((child=findproc(m_in.pid))==NIL_MPROC || !(child->mp_flags & STOPPED)) {
- return(ESRCH);
- }
- /* all the other calls are made by the parent fork of the debugger to
- * control execution of the child
- */
- switch (m_in.request) {
- case T_EXIT: /* exit */
- mm_exit(child, (int) m_in.data);
- mp->mp_reply.reply_trace = 0;
- return(OK);
- case T_RESUME:
- case T_STEP: /* resume execution */
- if (m_in.data < 0 || m_in.data > _NSIG) return(EIO);
- if (m_in.data > 0) { /* issue signal */
- child->mp_flags &= ~TRACED; /* so signal is not diverted */
- sig_proc(child, (int) m_in.data);
- child->mp_flags |= TRACED;
- }
- child->mp_flags &= ~STOPPED;
- break;
- }
- if (sys_trace(m_in.request,(int)(child-mproc),m_in.taddr,&m_in.data) != OK)
- return(-errno);
- mp->mp_reply.reply_trace = m_in.data;
- return(OK);
-}
-
-/*===========================================================================*
- * findproc *
- *===========================================================================*/
-PRIVATE struct mproc *findproc(lpid)
-pid_t lpid;
-{
- register struct mproc *rmp;
-
- for (rmp = &mproc[INIT_PROC_NR + 1]; rmp < &mproc[NR_PROCS]; rmp++)
- if (rmp->mp_flags & IN_USE && rmp->mp_pid == lpid) return(rmp);
- return(NIL_MPROC);
-}
-
-/*===========================================================================*
- * stop_proc *
- *===========================================================================*/
-PUBLIC void stop_proc(rmp, signo)
-register struct mproc *rmp;
-int signo;
-{
-/* A traced process got a signal so stop it. */
-
- register struct mproc *rpmp = mproc + rmp->mp_parent;
-
- if (sys_trace(-1, (int) (rmp - mproc), 0L, (long *) 0) != OK) return;
- rmp->mp_flags |= STOPPED;
- if (rpmp->mp_flags & WAITING) {
- rpmp->mp_flags &= ~WAITING; /* parent is no longer waiting */
- rpmp->mp_reply.reply_res2 = 0177 | (signo << 8);
- setreply(rmp->mp_parent, rmp->mp_pid);
- } else {
- rmp->mp_sigstatus = signo;
- }
- return;
-}
+++ /dev/null
-/* If there were any type definitions local to the Memory Manager, they would
- * be here. This file is included only for symmetry with the kernel and File
- * System, which do have some local type definitions.
- */
-
+++ /dev/null
-/* This file contains some utility routines for MM.
- *
- * The entry points are:
- * allowed: see if an access is permitted
- * no_sys: this routine is called for invalid system call numbers
- * panic: MM has run aground of a fatal error and cannot continue
- * tell_fs: interface to FS
- */
-
-#include "mm.h"
-#include <sys/stat.h>
-#include <minix/callnr.h>
-#include <minix/com.h>
-#include <fcntl.h>
-#include <signal.h> /* needed only because mproc.h needs it */
-#include "mproc.h"
-#include "param.h"
-
-/*===========================================================================*
- * allowed *
- *===========================================================================*/
-PUBLIC int allowed(name_buf, s_buf, mask)
-char *name_buf; /* pointer to file name to be EXECed */
-struct stat *s_buf; /* buffer for doing and returning stat struct*/
-int mask; /* R_BIT, W_BIT, or X_BIT */
-{
-/* Check to see if file can be accessed. Return EACCES or ENOENT if the access
- * is prohibited. If it is legal open the file and return a file descriptor.
- */
-
- int fd;
- int save_errno;
-
- /* Use the fact that mask for access() is the same as the permissions mask.
- * E.g., X_BIT in <minix/const.h> is the same as X_OK in <unistd.h> and
- * S_IXOTH in <sys/stat.h>. tell_fs(DO_CHDIR, ...) has set MM's real ids
- * to the user's effective ids, so access() works right for setuid programs.
- */
- if (access(name_buf, mask) < 0) return(-errno);
-
- /* The file is accessible but might not be readable. Make it readable. */
- tell_fs(SETUID, PM_PROC_NR, (int) SUPER_USER, (int) SUPER_USER);
-
- /* Open the file and fstat it. Restore the ids early to handle errors. */
- fd = open(name_buf, O_RDONLY | O_NONBLOCK);
- save_errno = errno; /* open might fail, e.g. from ENFILE */
- tell_fs(SETUID, PM_PROC_NR, (int) mp->mp_effuid, (int) mp->mp_effuid);
- if (fd < 0) return(-save_errno);
- if (fstat(fd, s_buf) < 0) panic("allowed: fstat failed", NO_NUM);
-
- /* Only regular files can be executed. */
- if (mask == X_BIT && (s_buf->st_mode & I_TYPE) != I_REGULAR) {
- close(fd);
- return(EACCES);
- }
- return(fd);
-}
-
-
-/*===========================================================================*
- * no_sys *
- *===========================================================================*/
-PUBLIC int no_sys()
-{
-/* A system call number not implemented by MM has been requested. */
-
- return(EINVAL);
-}
-
-
-/*===========================================================================*
- * panic *
- *===========================================================================*/
-PUBLIC void panic(format, num)
-char *format; /* format string */
-int num; /* number to go with format string */
-{
-/* Something awful has happened. Panics are caused when an internal
- * inconsistency is detected, e.g., a programming error or illegal value of a
- * defined constant.
- */
-
- printf("Memory manager panic: %s ", format);
- if (num != NO_NUM) printf("%d",num);
- printf("\n");
- tell_fs(SYNC, 0, 0, 0); /* flush the cache to the disk */
- sys_abort(RBT_PANIC);
-}
-
-
-/*===========================================================================*
- * tell_fs *
- *===========================================================================*/
-PUBLIC void tell_fs(what, p1, p2, p3)
-int what, p1, p2, p3;
-{
-/* This routine is only used by MM to inform FS of certain events:
- * tell_fs(CHDIR, slot, dir, 0)
- * tell_fs(EXEC, proc, 0, 0)
- * tell_fs(EXIT, proc, 0, 0)
- * tell_fs(FORK, parent, child, pid)
- * tell_fs(SETGID, proc, realgid, effgid)
- * tell_fs(SETSID, proc, 0, 0)
- * tell_fs(SETUID, proc, realuid, effuid)
- * tell_fs(SYNC, 0, 0, 0)
- * tell_fs(UNPAUSE, proc, signr, 0)
- */
- message m;
-
- m.tell_fs_arg1 = p1;
- m.tell_fs_arg2 = p2;
- m.tell_fs_arg3 = p3;
- _taskcall(FS_PROC_NR, what, &m);
-}