+++ /dev/null
-
-/*
- * sha2.c
- *
- * Version 1.0.0beta1
- *
- * Written by Aaron D. Gifford <me@aarongifford.com>
- *
- * Copyright 2000 Aaron D. Gifford. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the copyright holder nor the names of contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- */
-
-
-#include <sys/types.h>
-/* #include <sys/time.h> */
-/* #include <sys/systm.h> */
-/* #include <machine/endian.h> */
-#include "sha2.h"
-
-/*
- * ASSERT NOTE:
- * Some sanity checking code is included using assert(). On my FreeBSD
- * system, this additional code can be removed by compiling with NDEBUG
- * defined. Check your own systems manpage on assert() to see how to
- * compile WITHOUT the sanity checking code on your system.
- *
- * UNROLLED TRANSFORM LOOP NOTE:
- * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
- * loop version for the hash transform rounds (defined using macros
- * later in this file). Either define on the command line, for example:
- *
- * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
- *
- * or define below:
- *
- * #define SHA2_UNROLL_TRANSFORM
- *
- */
-
-#if defined(__bsdi__) || defined(__FreeBSD__)
-#define assert(x)
-#endif
-
-
-/*** SHA-256/384/512 Machine Architecture Definitions *****************/
-/*
- * SHA2_BYTE_ORDER NOTE:
- *
- * Please make sure that your system defines SHA2_BYTE_ORDER. If your
- * architecture is little-endian, make sure it also defines
- * SHA2_LITTLE_ENDIAN and that the two (SHA2_BYTE_ORDER and
- * SHA2_LITTLE_ENDIAN) are equivilent.
- *
- * If your system does not define the above, then you can do so by
- * hand like this:
- *
- * #define SHA2_LITTLE_ENDIAN 1234
- * #define SHA2_BIG_ENDIAN 4321
- *
- * And for little-endian machines, add:
- *
- * #define SHA2_BYTE_ORDER SHA2_LITTLE_ENDIAN
- *
- * Or for big-endian machines:
- *
- * #define SHA2_BYTE_ORDER SHA2_BIG_ENDIAN
- *
- * The FreeBSD machine this was written on defines BYTE_ORDER
- * appropriately by including <sys/types.h> (which in turn includes
- * <machine/endian.h> where the appropriate definitions are actually
- * made).
- */
-#if !defined(SHA2_BYTE_ORDER) || (SHA2_BYTE_ORDER != SHA2_LITTLE_ENDIAN && SHA2_BYTE_ORDER != SHA2_BIG_ENDIAN)
-#error Define SHA2_BYTE_ORDER to be equal to either SHA2_LITTLE_ENDIAN or SHA2_BIG_ENDIAN
-#endif
-
-/*
- * Define the followingsha2_* types to types of the correct length on
- * the native archtecture. Most BSD systems and Linux define u_intXX_t
- * types. Machines with very recent ANSI C headers, can use the
- * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
- * during compile or in the sha.h header file.
- *
- * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
- * will need to define these three typedefs below (and the appropriate
- * ones in sha.h too) by hand according to their system architecture.
- *
- * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
- * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
- */
-#if 0 /*def SHA2_USE_INTTYPES_H*/
-
-typedef uint8_t sha2_byte; /* Exactly 1 byte */
-typedef uint32_t sha2_word32; /* Exactly 4 bytes */
-typedef uint64_t sha2_word64; /* Exactly 8 bytes */
-
-#else /* SHA2_USE_INTTYPES_H */
-
-typedef u_int8_t sha2_byte; /* Exactly 1 byte */
-typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
-typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
-
-#endif /* SHA2_USE_INTTYPES_H */
-
-
-/*** SHA-256/384/512 Various Length Definitions ***********************/
-/* NOTE: Most of these are in sha2.h */
-#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
-#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
-#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
-
-
-/*** ENDIAN REVERSAL MACROS *******************************************/
-#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
-#define REVERSE32(w,x) { \
- sha2_word32 tmp = (w); \
- tmp = (tmp >> 16) | (tmp << 16); \
- (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
-}
-#define REVERSE64(w,x) { \
- sha2_word64 tmp = (w); \
- tmp = (tmp >> 32) | (tmp << 32); \
- tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
- ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
- (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
- ((tmp & 0x0000ffff0000ffffULL) << 16); \
-}
-#if MINIX_64BIT
-#undef REVERSE64
-#define REVERSE64(w,x) { \
- u32_t hi, lo; \
- REVERSE32(ex64hi((w)), lo); \
- REVERSE32(ex64lo((w)), hi); \
- (x) = make64(lo, hi); \
-}
-#endif /* MINIX_64BIT */
-#endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
-
-/*
- * Macro for incrementally adding the unsigned 64-bit integer n to the
- * unsigned 128-bit integer (represented using a two-element array of
- * 64-bit words):
- */
-#define ADDINC128(w,n) { \
- (w)[0] += (sha2_word64)(n); \
- if ((w)[0] < (n)) { \
- (w)[1]++; \
- } \
-}
-
-/*** THE SIX LOGICAL FUNCTIONS ****************************************/
-/*
- * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
- *
- * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
- * S is a ROTATION) because the SHA-256/384/512 description document
- * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
- * same "backwards" definition.
- */
-/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
-#define R(b,x) ((x) >> (b))
-/* 32-bit Rotate-right (used in SHA-256): */
-#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
-/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
-#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
-
-/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
-#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
-#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
-
-/* Four of six logical functions used in SHA-256: */
-#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
-#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
-#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
-#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
-
-/* Four of six logical functions used in SHA-384 and SHA-512: */
-#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
-#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
-#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
-#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
-
-/*** INTERNAL FUNCTION PROTOTYPES *************************************/
-/* NOTE: These should not be accessed directly from outside this
- * library -- they are intended for private internal visibility/use
- * only.
- */
-void SHA512_Last(SHA512_CTX*);
-void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
-void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
-
-
-/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
-/* Hash constant words K for SHA-256: */
-const static sha2_word32 K256[64] = {
- 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
- 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
- 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
- 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
- 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
- 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
- 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
- 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
- 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
- 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
- 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
- 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
- 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
- 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
- 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
- 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
-};
-
-/* Initial hash value H for SHA-256: */
-const static sha2_word32 sha256_initial_hash_value[8] = {
- 0x6a09e667UL,
- 0xbb67ae85UL,
- 0x3c6ef372UL,
- 0xa54ff53aUL,
- 0x510e527fUL,
- 0x9b05688cUL,
- 0x1f83d9abUL,
- 0x5be0cd19UL
-};
-
-#if !NO_64BIT
-/* Hash constant words K for SHA-384 and SHA-512: */
-const static sha2_word64 K512[80] = {
- 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
- 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
- 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
- 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
- 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
- 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
- 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
- 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
- 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
- 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
- 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
- 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
- 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
- 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
- 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
- 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
- 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
- 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
- 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
- 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
- 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
- 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
- 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
- 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
- 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
- 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
- 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
- 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
- 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
- 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
- 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
- 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
- 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
- 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
- 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
- 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
- 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
- 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
- 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
- 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
-};
-
-/* Initial hash value H for SHA-384 */
-const static sha2_word64 sha384_initial_hash_value[8] = {
- 0xcbbb9d5dc1059ed8ULL,
- 0x629a292a367cd507ULL,
- 0x9159015a3070dd17ULL,
- 0x152fecd8f70e5939ULL,
- 0x67332667ffc00b31ULL,
- 0x8eb44a8768581511ULL,
- 0xdb0c2e0d64f98fa7ULL,
- 0x47b5481dbefa4fa4ULL
-};
-
-/* Initial hash value H for SHA-512 */
-const static sha2_word64 sha512_initial_hash_value[8] = {
- 0x6a09e667f3bcc908ULL,
- 0xbb67ae8584caa73bULL,
- 0x3c6ef372fe94f82bULL,
- 0xa54ff53a5f1d36f1ULL,
- 0x510e527fade682d1ULL,
- 0x9b05688c2b3e6c1fULL,
- 0x1f83d9abfb41bd6bULL,
- 0x5be0cd19137e2179ULL
-};
-#endif /* !NO_64BIT */
-
-/*
- * Constant used by SHA256/384/512_End() functions for converting the
- * digest to a readable hexadecimal character string:
- */
-static const char *sha2_hex_digits = "0123456789abcdef";
-
-
-/*** SHA-256: *********************************************************/
-void SHA256_Init(SHA256_CTX* context) {
- if (context == (SHA256_CTX*)0) {
- return;
- }
- bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
- bzero(context->buffer, SHA256_BLOCK_LENGTH);
-#if MINIX_64BIT
- context->bitcount= cvu64(0);
-#else /* !MINIX_64BIT */
- context->bitcount = 0;
-#endif /* MINIX_64BIT */
-}
-
-#ifdef SHA2_UNROLL_TRANSFORM
-
-/* Unrolled SHA-256 round macros: */
-
-#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
-
-#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
- REVERSE32(*data++, W256[j]); \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
- K256[j] + W256[j]; \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
-
-
-#else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
-
-#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
- K256[j] + (W256[j] = *data++); \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
-
-#endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
-
-#define ROUND256(a,b,c,d,e,f,g,h) \
- s0 = W256[(j+1)&0x0f]; \
- s0 = sigma0_256(s0); \
- s1 = W256[(j+14)&0x0f]; \
- s1 = sigma1_256(s1); \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
- (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
-
-void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
- sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
- sha2_word32 T1, *W256;
- int j;
-
- W256 = (sha2_word32*)context->buffer;
-
- /* Initialize registers with the prev. intermediate value */
- a = context->state[0];
- b = context->state[1];
- c = context->state[2];
- d = context->state[3];
- e = context->state[4];
- f = context->state[5];
- g = context->state[6];
- h = context->state[7];
-
- j = 0;
- do {
- /* Rounds 0 to 15 (unrolled): */
- ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
- ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
- ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
- ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
- ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
- ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
- ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
- ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
- } while (j < 16);
-
- /* Now for the remaining rounds to 64: */
- do {
- ROUND256(a,b,c,d,e,f,g,h);
- ROUND256(h,a,b,c,d,e,f,g);
- ROUND256(g,h,a,b,c,d,e,f);
- ROUND256(f,g,h,a,b,c,d,e);
- ROUND256(e,f,g,h,a,b,c,d);
- ROUND256(d,e,f,g,h,a,b,c);
- ROUND256(c,d,e,f,g,h,a,b);
- ROUND256(b,c,d,e,f,g,h,a);
- } while (j < 64);
-
- /* Compute the current intermediate hash value */
- context->state[0] += a;
- context->state[1] += b;
- context->state[2] += c;
- context->state[3] += d;
- context->state[4] += e;
- context->state[5] += f;
- context->state[6] += g;
- context->state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = 0;
-}
-
-#else /* SHA2_UNROLL_TRANSFORM */
-
-void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
- sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
- sha2_word32 T1, T2, *W256;
- int j;
-
- W256 = (sha2_word32*)context->buffer;
-
- /* Initialize registers with the prev. intermediate value */
- a = context->state[0];
- b = context->state[1];
- c = context->state[2];
- d = context->state[3];
- e = context->state[4];
- f = context->state[5];
- g = context->state[6];
- h = context->state[7];
-
- j = 0;
- do {
-#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
- /* Copy data while converting to host byte order */
- REVERSE32(*data++,W256[j]);
- /* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
-#else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
- /* Apply the SHA-256 compression function to update a..h with copy */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
-#endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 16);
-
- do {
- /* Part of the message block expansion: */
- s0 = W256[(j+1)&0x0f];
- s0 = sigma0_256(s0);
- s1 = W256[(j+14)&0x0f];
- s1 = sigma1_256(s1);
-
- /* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
- (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 64);
-
- /* Compute the current intermediate hash value */
- context->state[0] += a;
- context->state[1] += b;
- context->state[2] += c;
- context->state[3] += d;
- context->state[4] += e;
- context->state[5] += f;
- context->state[6] += g;
- context->state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = T2 = 0;
-}
-
-#endif /* SHA2_UNROLL_TRANSFORM */
-
-void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
- unsigned int freespace, usedspace;
-
- if (len == 0) {
- /* Calling with no data is valid - we do nothing */
- return;
- }
-
- /* Sanity check: */
- assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
-
-#if MINIX_64BIT
- usedspace= rem64u(context->bitcount, SHA256_BLOCK_LENGTH*8)/8;
-#else /* !MINIX_64BIT */
- usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
-#endif /* MINIX_64BIT */
- if (usedspace > 0) {
- /* Calculate how much free space is available in the buffer */
- freespace = SHA256_BLOCK_LENGTH - usedspace;
-
- if (len >= freespace) {
- /* Fill the buffer completely and process it */
- bcopy(data, &context->buffer[usedspace], freespace);
-#if MINIX_64BIT
- context->bitcount= add64u(context->bitcount,
- freespace << 3);
-#else /* !MINIX_64BIT */
- context->bitcount += freespace << 3;
-#endif /* MINIX_64BIT */
- len -= freespace;
- data += freespace;
- SHA256_Transform(context, (sha2_word32*)context->buffer);
- } else {
- /* The buffer is not yet full */
- bcopy(data, &context->buffer[usedspace], len);
-#if MINIX_64BIT
- context->bitcount= add64u(context->bitcount, len << 3);
-#else /* !MINIX_64BIT */
- context->bitcount += len << 3;
-#endif /* MINIX_64BIT */
- /* Clean up: */
- usedspace = freespace = 0;
- return;
- }
- }
- while (len >= SHA256_BLOCK_LENGTH) {
- /* Process as many complete blocks as we can */
- SHA256_Transform(context, (const sha2_word32*)data);
-#if MINIX_64BIT
- context->bitcount= add64u(context->bitcount,
- SHA256_BLOCK_LENGTH << 3);
-#else /* !MINIX_64BIT */
- context->bitcount += SHA256_BLOCK_LENGTH << 3;
-#endif /* MINIX_64BIT */
- len -= SHA256_BLOCK_LENGTH;
- data += SHA256_BLOCK_LENGTH;
- }
- if (len > 0) {
- /* There's left-overs, so save 'em */
- bcopy(data, context->buffer, len);
-#if MINIX_64BIT
- context->bitcount= add64u(context->bitcount, len << 3);
-#else /* !MINIX_64BIT */
- context->bitcount += len << 3;
-#endif /* MINIX_64BIT */
- }
- /* Clean up: */
- usedspace = freespace = 0;
-}
-
-void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
- sha2_word32 *d = (sha2_word32*)digest;
- unsigned int usedspace;
-
- /* Sanity check: */
- assert(context != (SHA256_CTX*)0);
-
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != (sha2_byte*)0) {
-#if MINIX_64BIT
- usedspace= rem64u(context->bitcount, SHA256_BLOCK_LENGTH*8)/8;
-#else /* !MINIX_64BIT */
- usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
-#endif /* MINIX_64BIT */
-#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
- /* Convert FROM host byte order */
- REVERSE64(context->bitcount,context->bitcount);
-#endif
- if (usedspace > 0) {
- /* Begin padding with a 1 bit: */
- context->buffer[usedspace++] = 0x80;
-
- if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
- /* Set-up for the last transform: */
- bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
- } else {
- if (usedspace < SHA256_BLOCK_LENGTH) {
- bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
- }
- /* Do second-to-last transform: */
- SHA256_Transform(context, (sha2_word32*)context->buffer);
-
- /* And set-up for the last transform: */
- bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
- }
- } else {
- /* Set-up for the last transform: */
- bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
-
- /* Begin padding with a 1 bit: */
- *context->buffer = 0x80;
- }
- /* Set the bit count: */
- *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
-
- /* Final transform: */
- SHA256_Transform(context, (sha2_word32*)context->buffer);
-
-#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
- {
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 8; j++) {
- REVERSE32(context->state[j],context->state[j]);
- *d++ = context->state[j];
- }
- }
-#else
- bcopy(context->state, d, SHA256_DIGEST_LENGTH);
-#endif
- }
-
- /* Clean up state data: */
- bzero(context, sizeof(context));
- usedspace = 0;
-}
-
-char *SHA256_End(SHA256_CTX* context, char buffer[]) {
- sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
- int i;
-
- /* Sanity check: */
- assert(context != (SHA256_CTX*)0);
-
- if (buffer != (char*)0) {
- SHA256_Final(digest, context);
-
- for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
- *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
- *buffer++ = sha2_hex_digits[*d & 0x0f];
- d++;
- }
- *buffer = (char)0;
- } else {
- bzero(context, sizeof(context));
- }
- bzero(digest, SHA256_DIGEST_LENGTH);
- return buffer;
-}
-
-char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
- SHA256_CTX context;
-
- SHA256_Init(&context);
- SHA256_Update(&context, data, len);
- return SHA256_End(&context, digest);
-}
-
-#if !NO_64BIT
-
-/*** SHA-512: *********************************************************/
-void SHA512_Init(SHA512_CTX* context) {
- if (context == (SHA512_CTX*)0) {
- return;
- }
- bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
- bzero(context->buffer, SHA512_BLOCK_LENGTH);
- context->bitcount[0] = context->bitcount[1] = 0;
-}
-
-#ifdef SHA2_UNROLL_TRANSFORM
-
-/* Unrolled SHA-512 round macros: */
-#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
-
-#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
- REVERSE64(*data++, W512[j]); \
- T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
- K512[j] + W512[j]; \
- (d) += T1, \
- (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
- j++
-
-
-#else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
-
-#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
- T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
- K512[j] + (W512[j] = *data++); \
- (d) += T1; \
- (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
- j++
-
-#endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
-
-#define ROUND512(a,b,c,d,e,f,g,h) \
- s0 = W512[(j+1)&0x0f]; \
- s0 = sigma0_512(s0); \
- s1 = W512[(j+14)&0x0f]; \
- s1 = sigma1_512(s1); \
- T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
- (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
- (d) += T1; \
- (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
- j++
-
-void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
- sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
- sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
- int j;
-
- /* Initialize registers with the prev. intermediate value */
- a = context->state[0];
- b = context->state[1];
- c = context->state[2];
- d = context->state[3];
- e = context->state[4];
- f = context->state[5];
- g = context->state[6];
- h = context->state[7];
-
- j = 0;
- do {
- ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
- ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
- ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
- ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
- ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
- ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
- ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
- ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
- } while (j < 16);
-
- /* Now for the remaining rounds up to 79: */
- do {
- ROUND512(a,b,c,d,e,f,g,h);
- ROUND512(h,a,b,c,d,e,f,g);
- ROUND512(g,h,a,b,c,d,e,f);
- ROUND512(f,g,h,a,b,c,d,e);
- ROUND512(e,f,g,h,a,b,c,d);
- ROUND512(d,e,f,g,h,a,b,c);
- ROUND512(c,d,e,f,g,h,a,b);
- ROUND512(b,c,d,e,f,g,h,a);
- } while (j < 80);
-
- /* Compute the current intermediate hash value */
- context->state[0] += a;
- context->state[1] += b;
- context->state[2] += c;
- context->state[3] += d;
- context->state[4] += e;
- context->state[5] += f;
- context->state[6] += g;
- context->state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = 0;
-}
-
-#else /* SHA2_UNROLL_TRANSFORM */
-
-void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
- sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
- sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
- int j;
-
- /* Initialize registers with the prev. intermediate value */
- a = context->state[0];
- b = context->state[1];
- c = context->state[2];
- d = context->state[3];
- e = context->state[4];
- f = context->state[5];
- g = context->state[6];
- h = context->state[7];
-
- j = 0;
- do {
-#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
- /* Convert TO host byte order */
- REVERSE64(*data++, W512[j]);
- /* Apply the SHA-512 compression function to update a..h */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
-#else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
- /* Apply the SHA-512 compression function to update a..h with copy */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
-#endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
- T2 = Sigma0_512(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 16);
-
- do {
- /* Part of the message block expansion: */
- s0 = W512[(j+1)&0x0f];
- s0 = sigma0_512(s0);
- s1 = W512[(j+14)&0x0f];
- s1 = sigma1_512(s1);
-
- /* Apply the SHA-512 compression function to update a..h */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
- (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
- T2 = Sigma0_512(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 80);
-
- /* Compute the current intermediate hash value */
- context->state[0] += a;
- context->state[1] += b;
- context->state[2] += c;
- context->state[3] += d;
- context->state[4] += e;
- context->state[5] += f;
- context->state[6] += g;
- context->state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = T2 = 0;
-}
-
-#endif /* SHA2_UNROLL_TRANSFORM */
-
-void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
- unsigned int freespace, usedspace;
-
- if (len == 0) {
- /* Calling with no data is valid - we do nothing */
- return;
- }
-
- /* Sanity check: */
- assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
-
- usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
- if (usedspace > 0) {
- /* Calculate how much free space is available in the buffer */
- freespace = SHA512_BLOCK_LENGTH - usedspace;
-
- if (len >= freespace) {
- /* Fill the buffer completely and process it */
- bcopy(data, &context->buffer[usedspace], freespace);
- ADDINC128(context->bitcount, freespace << 3);
- len -= freespace;
- data += freespace;
- SHA512_Transform(context, (sha2_word64*)context->buffer);
- } else {
- /* The buffer is not yet full */
- bcopy(data, &context->buffer[usedspace], len);
- ADDINC128(context->bitcount, len << 3);
- /* Clean up: */
- usedspace = freespace = 0;
- return;
- }
- }
- while (len >= SHA512_BLOCK_LENGTH) {
- /* Process as many complete blocks as we can */
- SHA512_Transform(context, (const sha2_word64*)data);
- ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
- len -= SHA512_BLOCK_LENGTH;
- data += SHA512_BLOCK_LENGTH;
- }
- if (len > 0) {
- /* There's left-overs, so save 'em */
- bcopy(data, context->buffer, len);
- ADDINC128(context->bitcount, len << 3);
- }
- /* Clean up: */
- usedspace = freespace = 0;
-}
-
-void SHA512_Last(SHA512_CTX* context) {
- unsigned int usedspace;
-
- usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
-#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
- /* Convert FROM host byte order */
- REVERSE64(context->bitcount[0],context->bitcount[0]);
- REVERSE64(context->bitcount[1],context->bitcount[1]);
-#endif
- if (usedspace > 0) {
- /* Begin padding with a 1 bit: */
- context->buffer[usedspace++] = 0x80;
-
- if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
- /* Set-up for the last transform: */
- bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
- } else {
- if (usedspace < SHA512_BLOCK_LENGTH) {
- bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
- }
- /* Do second-to-last transform: */
- SHA512_Transform(context, (sha2_word64*)context->buffer);
-
- /* And set-up for the last transform: */
- bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
- }
- } else {
- /* Prepare for final transform: */
- bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
-
- /* Begin padding with a 1 bit: */
- *context->buffer = 0x80;
- }
- /* Store the length of input data (in bits): */
- *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
- *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
-
- /* Final transform: */
- SHA512_Transform(context, (sha2_word64*)context->buffer);
-}
-
-void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
- sha2_word64 *d = (sha2_word64*)digest;
-
- /* Sanity check: */
- assert(context != (SHA512_CTX*)0);
-
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != (sha2_byte*)0) {
- SHA512_Last(context);
-
- /* Save the hash data for output: */
-#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
- {
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 8; j++) {
- REVERSE64(context->state[j],context->state[j]);
- *d++ = context->state[j];
- }
- }
-#else
- bcopy(context->state, d, SHA512_DIGEST_LENGTH);
-#endif
- }
-
- /* Zero out state data */
- bzero(context, sizeof(context));
-}
-
-char *SHA512_End(SHA512_CTX* context, char buffer[]) {
- sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
- int i;
-
- /* Sanity check: */
- assert(context != (SHA512_CTX*)0);
-
- if (buffer != (char*)0) {
- SHA512_Final(digest, context);
-
- for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
- *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
- *buffer++ = sha2_hex_digits[*d & 0x0f];
- d++;
- }
- *buffer = (char)0;
- } else {
- bzero(context, sizeof(context));
- }
- bzero(digest, SHA512_DIGEST_LENGTH);
- return buffer;
-}
-
-char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
- SHA512_CTX context;
-
- SHA512_Init(&context);
- SHA512_Update(&context, data, len);
- return SHA512_End(&context, digest);
-}
-
-
-/*** SHA-384: *********************************************************/
-void SHA384_Init(SHA384_CTX* context) {
- if (context == (SHA384_CTX*)0) {
- return;
- }
- bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
- bzero(context->buffer, SHA384_BLOCK_LENGTH);
- context->bitcount[0] = context->bitcount[1] = 0;
-}
-
-void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
- SHA512_Update((SHA512_CTX*)context, data, len);
-}
-
-void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
- sha2_word64 *d = (sha2_word64*)digest;
-
- /* Sanity check: */
- assert(context != (SHA384_CTX*)0);
-
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != (sha2_byte*)0) {
- SHA512_Last((SHA512_CTX*)context);
-
- /* Save the hash data for output: */
-#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
- {
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 6; j++) {
- REVERSE64(context->state[j],context->state[j]);
- *d++ = context->state[j];
- }
- }
-#else
- bcopy(context->state, d, SHA384_DIGEST_LENGTH);
-#endif
- }
-
- /* Zero out state data */
- bzero(context, sizeof(context));
-}
-
-char *SHA384_End(SHA384_CTX* context, char buffer[]) {
- sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
- int i;
-
- /* Sanity check: */
- assert(context != (SHA384_CTX*)0);
-
- if (buffer != (char*)0) {
- SHA384_Final(digest, context);
-
- for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
- *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
- *buffer++ = sha2_hex_digits[*d & 0x0f];
- d++;
- }
- *buffer = (char)0;
- } else {
- bzero(context, sizeof(context));
- }
- bzero(digest, SHA384_DIGEST_LENGTH);
- return buffer;
-}
-
-char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
- SHA384_CTX context;
-
- SHA384_Init(&context);
- SHA384_Update(&context, data, len);
- return SHA384_End(&context, digest);
-}
-
-#endif /* !NO_64BIT */
-
-/*
- * $PchId: sha2.c,v 1.1 2005/06/28 14:29:23 philip Exp $
- */